Skip to main content
Log in

Multi-micron crisscross structures grown from DNA-origami slats

  • Article
  • Published:

From Nature Nanotechnology

View current issue Submit your manuscript

An Author Correction to this article was published on 23 March 2023

This article has been updated

Abstract

Living systems achieve robust self-assembly across a wide range of length scales. In the synthetic realm, nanofabrication strategies such as DNA origami have enabled robust self-assembly of submicron-scale shapes from a multitude of single-stranded components. To achieve greater complexity, subsequent hierarchical joining of origami can be pursued. However, erroneous and missing linkages restrict the number of unique origami that can be practically combined into a single design. Here we extend crisscross polymerization, a strategy previously demonstrated with single-stranded components, to DNA-origami ‘slats’ for fabrication of custom multi-micron shapes with user-defined nanoscale surface patterning. Using a library of ~2,000 strands that are combinatorially arranged to create unique DNA-origami slats, we realize finite structures composed of >1,000 uniquely addressable slats, with a mass exceeding 5 GDa, lateral dimensions of roughly 2 µm and a multitude of periodic structures. Robust production of target crisscross structures is enabled through strict control over initiation, rapid growth and minimal premature termination, and highly orthogonal binding specificities. Thus crisscross growth provides a route for prototyping and scalable production of structures integrating thousands of unique components (that is, origami slats) that each is sophisticated and molecularly precise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Overview of crisscross assembly of DNA-origami slats.
Fig. 2: Assembly of finite megastructures from DNA-origami slats, where every slat is unique and addressable (see the designs in Fig. 1c).
Fig. 3: Assembly of periodic ribbons and sheets that grow with 6HB slats in one and two dimensions.
Fig. 4: Finite and periodic crisscross megastructures as addressable DNA canvases to pattern arbitrary cargo.
Fig. 5: Characterization of growth versus reaction parameters.

Similar content being viewed by others

Data availability

All raw TEM image data that were measured to determine growth and nucleation of origami crisscross megastructures are available upon request from W.M.S.

Code availability

Scripts that were used to make various assignments of handles of staple oligonucleotides, and scripts that were used to measure Hamming distances of sequence assignments, are available at https://github.com/aersh/origamicrisscross.

Change history

References

  1. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  2. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  3. Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    Article  CAS  Google Scholar 

  4. Benson, E. et al. DNA rendering of polyhedral meshes at the nanoscale. Nature 523, 441–444 (2015).

    Article  CAS  Google Scholar 

  5. Han, D. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).

    Article  CAS  Google Scholar 

  6. Han, D. et al. DNA gridiron nanostructures based on four-arm junctions. Science 339, 1412–1415 (2013).

    Article  CAS  Google Scholar 

  7. Marchi, A. N., Saaem, I., Vogen, B. N., Brown, S. & LaBean, T. H. Toward larger DNA origami. Nano Lett. 14, 5740–5747 (2014).

    Article  CAS  Google Scholar 

  8. Nickels, P. C. et al. DNA origami structures directly assembled from intact bacteriophages. Small 10, 1765–1769 (2014).

    Article  CAS  Google Scholar 

  9. Zhang, H. et al. Folding super-sized DNA origami with scaffold strands from long-range PCR. Chem. Commun. 48, 6405–6407 (2012).

    Article  CAS  Google Scholar 

  10. Wei, B., Dai, M. & Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–626 (2012).

    Article  CAS  Google Scholar 

  11. Ke, Y. et al. DNA brick crystals with prescribed depths. Nat. Chem. 6, 994–1002 (2014).

    Article  CAS  Google Scholar 

  12. Ong, L. L. et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552, 72–77 (2017).

    Article  CAS  Google Scholar 

  13. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    Article  CAS  Google Scholar 

  14. Pfeifer, W. & Saccà, B. From nano to macro through hierarchical self-assembly: the DNA paradigm. ChemBioChem 17, 1063–1080 (2016).

    Article  CAS  Google Scholar 

  15. Zhao, Z., Liu, Y. & Yan, H. Organizing DNA origami tiles into larger structures using preformed scaffold frames. Nano Lett. 11, 2997–3002 (2011).

  16. Wagenbauer, K. F., Sigl, C. & Dietz, H. Gigadalton-scale shape-programmable DNA assemblies. Nature 552, 78–83 (2017).

    Article  CAS  Google Scholar 

  17. Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    Article  CAS  Google Scholar 

  18. Rajendran, A., Endo, M., Katsuda, Y., Hidaka, K. & Sugiyama, H. Programmed two-dimensional self-assembly of multiple DNA origami jigsaw pieces. ACS Nano 5, 665–671 (2011).

    Article  CAS  Google Scholar 

  19. Liu, W., Zhong, H., Wang, R. & Seeman, N. C. Crystalline two-dimensional DNA-origami arrays. Angew. Chem. Int. Ed. 50, 264–267 (2011).

    Article  CAS  Google Scholar 

  20. Woo, S. & Rothemund, P. W. K. Programmable molecular recognition based on the geometry of DNA nanostructures. Nat. Chem. 3, 620–627 (2011).

    Article  CAS  Google Scholar 

  21. Sigl, C. et al. Programmable icosahedral shell system for virus trapping. Nat. Mater. 20, 1281–1289 (2021).

    Article  CAS  Google Scholar 

  22. Yao, G. et al. Meta-DNA structures. Nat. Chem. 12, 1067–1075 (2020).

    Article  CAS  Google Scholar 

  23. Berengut, J. F. et al. Self-limiting polymerization of DNA origami subunits with strain accumulation. ACS Nano 14, 17428–17441 (2020).

    Article  CAS  Google Scholar 

  24. Wickham, S. F. et al. Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard. Nat. Commun. 11, 1–10 (2020).

    Article  Google Scholar 

  25. Tikhomirov, G., Petersen, P. & Qian, L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017).

    Article  CAS  Google Scholar 

  26. Minev, D., Wintersinger, C. M., Ershova, A. & Shih, W. M. Robust nucleation control via crisscross polymerization of highly coordinated DNA slats. Nat. Commun. 12, 1741 (2021).

    Article  Google Scholar 

  27. Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65 (2010).

    Article  CAS  Google Scholar 

  28. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    Article  CAS  Google Scholar 

  29. Acuna, G. P. et al. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510 (2012).

    Article  CAS  Google Scholar 

  30. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    Article  CAS  Google Scholar 

  31. Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).

    Article  CAS  Google Scholar 

  32. Shaw, A. et al. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nat. Nanotechnol. 14, 184–190 (2019).

    Article  CAS  Google Scholar 

  33. Derr, N. D. et al. Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold. Science 338, 662–665 (2012).

    Article  CAS  Google Scholar 

  34. Mathieu, F. et al. Six-helix bundles designed from DNA. Nano Lett. 5, 661–665 (2005).

    Article  CAS  Google Scholar 

  35. Douglas, S. M., Chou, J. J. & Shih, W. M. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. In Proc. Natl. Acad. Sci. USA 104, 6644–6648 (2007).

    Article  CAS  Google Scholar 

  36. Strauss, M. T., Schueder, F., Haas, D., Nickels, P. C. & Jungmann, R. Quantifying absolute addressability in DNA origami with molecular resolution. Nat. Commun. 9, 1600 (2018).

    Article  Google Scholar 

  37. Scheible, M. B. et al. A compact DNA cube with side length 10 nm. Small 11, 5200–5205 (2015).

    Article  CAS  Google Scholar 

  38. Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    Article  CAS  Google Scholar 

  39. Bruetzel, L. K., Walker, P. U., Gerling, T., Dietz, H. & Lipfert, J. Time-resolved small-angle X-ray scattering reveals millisecond transitions of a DNA origami switch. Nano Lett. 18, 2672–2676 (2018).

    Article  CAS  Google Scholar 

  40. Zhang, T. et al. 3D DNA origami crystals. Adv. Mater. 30, 1800273 (2018).

    Article  Google Scholar 

  41. Zheng, J. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    Article  CAS  Google Scholar 

  42. Tikhomirov, G., Petersen, P. & Qian, L. Triangular DNA origami tilings. J. Am. Chem. Soc. 140, 17361–17364 (2018).

    Article  CAS  Google Scholar 

  43. Rothemund, P. W. K., Papadakis, N. & Winfree, E. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, e424 (2004).

    Article  Google Scholar 

  44. Barish, R. D., Schulman, R., Rothemund, P. W. K. & Winfree, E. An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl Acad. Sci. USA 106, 6054–6059 (2009).

    Article  CAS  Google Scholar 

  45. Woods, D. et al. Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Nature 567, 366–372 (2019).

    Article  CAS  Google Scholar 

  46. Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37, 5001–5006 (2009).

    Article  CAS  Google Scholar 

  47. Schindelin, J. et al. FIJI: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

  48. Wagenbauer, K. F. et al. How we make DNA origami. ChemBioChem 18, 1873–1885 (2017).

    Article  CAS  Google Scholar 

  49. Meijering, E. et al. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A 58, 167–176 (2004).

    Article  CAS  Google Scholar 

  50. Dai, M., Jungmann, R. & Yin, P. Optical imaging of individual biomolecules in densely packed clusters. Nat. Nanotechnol. 11, 798–807 (2016).

    Article  CAS  Google Scholar 

  51. Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the following individuals: J. Kishi for suggesting and helping write a grant for the Echo Acoustic Liquid Handler that made this work possible; S. Cabi and T. Zhang for helping test early designs of crisscross origamis; and V. Manoharan, M. Brenner, R. Sørensen and J. Hahn for the fruitful discussions. Funding was provided by a Wyss Core Faculty Award (W.S., P.Y.); a Wyss Molecular Robotics Initiative Award (W.S., P.Y.); National Science Foundation DMREF Award 1435964 (W.S.); National Science Foundation Award CCF-1317291 (W.S.); Office of Naval Research Award N00014-15-1-0073 (W.S.); Office of Naval Research Award N00014-18-1-2566 (W.S.); Office of Naval Research DURIP Award N00014-19-1-2345 (W.S.); NIH NIGMS Award 5R01GM131401 (W.S.); NSERC PGSD3-502356-2017 (C.M.W.); Alexander S. Onassis Scholarship for Hellenes (A.E.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: C.M.W., D.M., A.E., J.F.B., W.M.S. Methodology: C.M.W., D.M., A.E., W.M.S. Software: C.M.W., D.M., A.E., G.G. Validation: C.M.W., D.M., A.E. Formal analysis: C.M.W., D.M., A.E., H.M.S., G.G. Investigation: C.M.W., D.M., A.E., H.M.S., G.G., J.F.B., F.E.C.D. Writing (original draft): C.M.W. Writing (review and editing): C.M.W., D.M., A.E., H.M.S., G.G., F.E.C.D., W.M.S. Visualization: C.M.W., D.M., A.E., H.M.S., J.F.B. Supervision: C.M.W., P.Y., W.M.S. Funding acquisition: C.M.W., D.M., A.E., P.Y., W.M.S.

Corresponding author

Correspondence to William M. Shih.

Ethics declarations

Competing interests

A patent (PCT/US2017/045013) entitled ‘Crisscross Cooperative Self-assembly’ has been filed based on this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–8, Figs. 1–45, Tables 1–8 and references.

Supplementary Table

DNA sequences in Excel format

Supplementary Video 1

Supplementary Video 1

Supplementary Data 5–8

Supplementary Data 5–8

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wintersinger, C.M., Minev, D., Ershova, A. et al. Multi-micron crisscross structures grown from DNA-origami slats. Nat. Nanotechnol. 18, 281–289 (2023). https://doi.org/10.1038/s41565-022-01283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01283-1

  • Springer Nature Limited

This article is cited by

Navigation