Skip to main content
Log in

Isotopic evidence against North Pacific Deep Water formation during late Pliocene warmth

  • Article
  • Published:

From Nature Geoscience

View current issue Submit your manuscript

This article has been updated

Abstract

Several modelling and observational studies suggest deep water formation in the subpolar North Pacific as a possible alternative mode of thermohaline circulation that occurred in the warm Pliocene, a time when global atmospheric partial pressure of carbon dioxide was like the modern atmosphere (~400 ppm). We test this hypothesis by measuring the δ13C of the benthic foraminifer Cibicidoides wuellerstorfi collected from northernmost Pacific mid-Piacenzian Warm Period (3.264–3.025 Myr ago) sediments. The data reveal progressively more isotopically negative dissolved inorganic carbon along a northward Equator-to-pole transect, the opposite of the expected Pliocene Pacific meridional overturning circulation signal. C. wuellerstorfi δ13C is also often more positive at the deeper Ocean Drilling Program (ODP) site 887 compared with the shallower ODP site 883, suggesting ‘bottom-up’ ventilation of the deep Pacific Ocean. We then present alkenone sea surface temperature and export-productivity data from ODP site 883, which suggest that late Pliocene subarctic North Pacific carbonate sedimentation was, at least in part, probably due to higher coccolithophore export production, rather than North Pacific Deep Water formation as previously argued. Therefore, we suggest it is unlikely that North Pacific Deep Water formation occurred in the mid-Piacenzian Warm Period, although a shallower overturning cell cannot be ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: PMOC did not influence water masses at or below ~2,200 m water depth.
Fig. 2: Tracing late Pliocene ocean carbon storage with stable carbon isotopes.
Fig. 3: The difference between late Pliocene deep Atlantic and deep Pacific δ13CDIC tracks benthic foraminiferal δ18O.
Fig. 4: Enhanced late Pliocene surface carbonate productivity as a driver of carbonate sedimentation.

Similar content being viewed by others

Data availability

All data from sites 883 and 887, calculations, new age models and composite sections generated for this paper are available in Supplementary Data 1. All data are available via PANGAEA at https://doi.org/10.1594/PANGAEA.967342 (ref. 73) and via figshare at https://doi.org/10.6084/m9.figshare.25066535 (ref. 74). References to published C. wuellerstorfi stable isotope datasets are available in Supplementary Table 2. Source data are provided with this paper.

Code availability

Example code to implement our bootstrapping technique is available as Supplementary Code 1. All figures with maps (Figs. 1a and 2a, and Supplementary Fig. 3a) were generated with the M_Map package in MATLAB49.

Change history

  • 13 August 2024

    In the version of this article initially published, the Extended Data Fig. 1 legend featured some obsolete figure description which is now removed from the HTML and PDF versions of the article.

References

  1. Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).

    Article  CAS  Google Scholar 

  2. Rafter, P. A. et al. Global reorganization of deep-sea circulation and carbon storage after the last ice age. Sci. Adv. 8, eabq5434 (2022).

    Article  CAS  Google Scholar 

  3. Hoogakker, B. A. A. et al. Glacial expansion of oxygen-depleted seawater in the eastern tropical Pacific. Nature 562, 410–413 (2018).

    Article  CAS  Google Scholar 

  4. Jacobel, A. W. et al. Deep Pacific storage of respired carbon during the last ice age: perspectives from bottom water oxygen reconstructions. Quat. Sci. Rev. 230, 106065 (2020).

    Article  Google Scholar 

  5. Anderson, R. F. et al. Deep‐sea oxygen depletion and ocean carbon sequestration during the last ice age. Glob. Biogeochem. Cycles 33, 301–317 (2019).

    Article  CAS  Google Scholar 

  6. Ford, H. L. et al. Sustained mid-Pliocene warmth led to deep water formation in the North Pacific. Nat. Geosci. 15, 658–663 (2022).

    Article  CAS  Google Scholar 

  7. Haywood, A. M. et al. The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity. Climate 16, 2095–2123 (2020).

    Google Scholar 

  8. McClymont, E. L. et al. Lessons from a high-CO2 world: an ocean view from ∼3 million years ago. Climate 16, 1599–1615 (2020).

    Google Scholar 

  9. Tierney, J. E. et al. Past climates inform our future. Science 370, eaay3701 (2020).

    Article  CAS  Google Scholar 

  10. Haywood, A. M., Dowsett, H. J. & Dolan, A. M. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun. 7, 10646 (2016).

    Article  CAS  Google Scholar 

  11. Burls, N. J. et al. Simulating Miocene warmth: insights from an opportunistic multi-model ensemble (MioMIP1). Paleoceanogr. Paleoclimatol. 36, e2020PA004054 (2021).

    Article  Google Scholar 

  12. Huber, M. & Caballero, R. The early Eocene equable climate problem revisited. Climate 7, 603–633 (2011).

    Google Scholar 

  13. Burls, N. J. & Fedorov, A. V. Simulating Pliocene warmth and a permanent El Niño-like state: the role of cloud albedo. Paleoceanography 29, 893–910 (2014).

    Article  Google Scholar 

  14. Kiehl, J. T. & Shields, C. A. Sensitivity of the Palaeocene–Eocene Thermal Maximum climate to cloud properties. Phil. Trans. R. Soc. A 371, 20130093 (2013).

    Article  Google Scholar 

  15. Burls, N. J. & Fedorov, A. V. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proc. Natl Acad. Sci. USA 114, 12888–12893 (2017).

    Article  CAS  Google Scholar 

  16. Burls, N. J. et al. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene. Sci. Adv. 3, e1700156 (2017).

    Article  Google Scholar 

  17. Schmittner, A. et al. Calibration of the carbon isotope composition (δ13C) of benthic foraminifera. Paleoceanography 32, 512–530 (2017).

    Article  Google Scholar 

  18. Kroopnick, P. M. The distribution of 13C of ΣCO2 in the world oceans. Deep Sea Res. A 32, 57–84 (1985).

    Article  CAS  Google Scholar 

  19. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    Article  CAS  Google Scholar 

  20. Olsen, A. et al. The Global Ocean Data Analysis Project version 2 (GLODAPv2) - an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8, 297–323 (2016).

    Article  Google Scholar 

  21. Galbraith, E. D., Kwon, E. Y., Bianchi, D., Hain, M. P. & Sarmiento, J. L. The impact of atmospheric CO2 on carbon isotope ratios of the atmosphere and ocean. Glob. Biogeochem. Cycles 29, 307–324 (2015).

    Article  CAS  Google Scholar 

  22. Eggleston, S. & Galbraith, E. D. The devil’s in the disequilibrium: multi-component analysis of dissolved carbon and oxygen changes under a broad range of forcings in a general circulation model. Biogeosciences 15, 3761–3777 (2018).

    Article  CAS  Google Scholar 

  23. Mook, W. G., Bommerson, J. C. & Staverman, W. H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169–176 (1974).

    Article  CAS  Google Scholar 

  24. Lynch‐Stieglitz, J., Stocker, T. F., Broecker, W. S. & Fairbanks, R. G. The influence of air–sea exchange on the isotopic composition of oceanic carbon: observations and modeling. Glob. Biogeochem. Cycles 9, 653–665 (1995).

    Article  Google Scholar 

  25. Mackensen, A., Hubberten, H.-W., Bickert, T., Fischer, G. & Fütterer, D. K. The δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in Southern Ocean deep water: implications for glacial ocean circulation models. Paleoceanography 8, 587–610 (1993).

    Article  Google Scholar 

  26. Ebisuzaki, W. A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Clim. 10, 2147–2153 (1997).

    Article  Google Scholar 

  27. Feng, H., Tian, J., Lyle, M., Westerhold, T. & Wilkens, R. High resolution benthic foraminiferal δ18O and δ13C records at ODP site 807 over the past 5 Ma, Ontong Java Plateau: evolution of North Pacific ventilation, Pliocene to Holocene. Glob. Planet. Change 217, 103945 (2022).

    Article  Google Scholar 

  28. Karas, C. et al. Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow. Nat. Geosci. 2, 434–438 (2009).

    Article  CAS  Google Scholar 

  29. Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26, 80–97 (2013).

    Article  Google Scholar 

  30. Chen, T., Liu, Q. & Wang, X. Enhanced direct ventilation in the subarctic Pacific Ocean during 3.5–2.73 Ma: new evidence of elemental results from ODP site 882. Glob. Planet. Change 215, 103867 (2022).

    Article  Google Scholar 

  31. Dowsett, H. J. & Ishman, S. E. Middle Pliocene planktonic and benthic foraminifers from the subarctic North Pacific: sites 883 and 887. Proc. ODP Sci. Res. 145, 141–156 (1992).

  32. Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2012).

    Article  CAS  Google Scholar 

  33. Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  34. Kawabe, M. & Fujio, S. Pacific Ocean circulation based on observation. J. Oceanogr. 66, 389–403 (2010).

    Article  Google Scholar 

  35. Peterson, C. D. & Lisiecki, L. E. Deglacial carbon cycle changes observed in a compilation of 127 benthic δ13C time series (20–6 ka). Climate 14, 1229–1252 (2018).

    Google Scholar 

  36. Jian, Z. et al. Changes in deep Pacific circulation and carbon storage during the Pliocene–Pleistocene transition. Earth Planet. Sci. Lett. 605, 118020 (2023).

    Article  CAS  Google Scholar 

  37. de la Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R. P. & Foster, G. L. Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation. Sci. Rep. 10, 14–21 (2020).

    Google Scholar 

  38. Haug, G. H., Sigman, D. M., Tiedemann, R., Pedersen, T. F. & Sarnthein, M. Onset of permanent stratification in the subarctic Pacific Ocean. Nature 401, 779–782 (1999).

    Article  CAS  Google Scholar 

  39. Rea, D. K., Basov, I. A., Janecek, T. R., Palmer-Julson, A. & Shipboard Scientific Party. Initial report: site 882. Proc. ODP Init. Rep. https://doi.org/10.2973/odp.proc.ir.145.106.1993 (1993).

  40. Haug, G. H., Maslin, M. A., Sarnthein, M., Stax, R. & Tiedemann, R. Evolution of northwest Pacific sedimentation patterns since 6 Ma (site 882). Proc. ODP Sci. Res. 145, 293–314 (1995).

    CAS  Google Scholar 

  41. Marlowe, I. T., Brassell, S. C., Eglinton, G. & Green, J. C. Long chain unsaturated ketones and esters in living algae and marine sediments. Org. Geochem. 6, 135–141 (1984).

    Article  CAS  Google Scholar 

  42. Bolton, C. T. et al. Glacial–interglacial productivity changes recorded by alkenones and microfossils in late Pliocene eastern equatorial Pacific and Atlantic upwelling zones. Earth Planet. Sci. Lett. 295, 401–411 (2010).

    Article  CAS  Google Scholar 

  43. Haug, G. H. et al. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature 433, 821–825 (2005).

    Article  CAS  Google Scholar 

  44. Studer, A. S. et al. Enhanced stratification and seasonality in the subarctic Pacific upon Northern Hemisphere glaciation—new evidence from diatom-bound nitrogen isotopes, alkenones and archaeal tetraethers. Earth Planet. Sci. Lett. 351–352, 84–94 (2012).

    Article  Google Scholar 

  45. Lamy, F. et al. Five million years of Antarctic Circumpolar Current strength variability. Nature 627, 789–796 (2024).

    Article  CAS  Google Scholar 

  46. Rae, J. W. B. et al. Overturning circulation, nutrient limitation, and warming in the glacial North Pacific. Sci. Adv. 6, eabd1654 (2020).

    Article  CAS  Google Scholar 

  47. Abell, J. T. & Winckler, G. Long‐term variability in Pliocene North Pacific Ocean export production and its implications for ocean circulation in a warmer world. AGU Adv. 4, e2022AV000853 (2023).

    Article  Google Scholar 

  48. Kemp, A. E. S. & Villareal, T. A. High diatom production and export in stratified waters – a potential negative feedback to global warming. Prog. Oceanogr. 119, 4–23 (2013).

    Article  Google Scholar 

  49. Pawlowicz, R. M_Map: a mapping package for MATLAB, version 1.4m (2020); https://www.eoas.ubc.ca/~rich/map.html

  50. Ahn, S., Khider, D., Lisiecki, L. E. & Lawrence, C. E. A probabilistic Pliocene–Pleistocene stack of benthic δ18O using a profile hidden Markov model. Dyn. Stat. Clim. Syst. 2, dzx002 (2017).

    Google Scholar 

  51. Rea, D. K., Basov, I. A., Janecek, T. R., Palmer-Julson, A. & Shipboard Scientific Party. Initial report: site 883. Proc. ODP Init. Rep. 145, 121–208 (1993).

  52. Meyers, S. R. astrochron: A Computational Tool for Astrochronology http://cran.r-project.org/package=astrochron (2014).

  53. Rea, D. K., Basov, I. A., Janecek, T. R., Palmer-Julson, A. & Shipboard Scientific Party. Initial report: site 887. Proc. ODP Init. Rep. 145, 335–391 (1993).

  54. Tiedemann, R. & Haug, G. H. Astronomical calibration of cycle stratigraphy for site 882 in the northwest Pacific. Proc. ODP Sci. Res. 145, 283–292 (1995).

    Google Scholar 

  55. Shackleton, N. J. & Opdyke, N. D. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quat. Res. 3, 39–55 (1973).

    Article  CAS  Google Scholar 

  56. Kranner, M., Harzhauser, M., Beer, C., Auer, G. & Piller, W. E. Calculating dissolved marine oxygen values based on an enhanced benthic foraminifera oxygen index. Sci. Rep. 12, 1376 (2022).

    Article  CAS  Google Scholar 

  57. Kaiho, K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22, 719–722 (1994).

    Article  CAS  Google Scholar 

  58. Raja, M. & Rosell-Melé, A. Appraisal of sedimentary alkenones for the quantitative reconstruction of phytoplankton biomass. Proc. Natl Acad. Sci. USA 118, e2014787118 (2021).

    Article  CAS  Google Scholar 

  59. Tierney, J. E. & Tingley, M. P. BAYSPLINE: a new calibration for the alkenone paleothermometer. Paleoceanogr. Paleoclimatol. 33, 281–301 (2018).

    Article  Google Scholar 

  60. Keigwin, L. D. Glacial-age hydrography of the far northwest Pacific Ocean. Paleoceanography 13, 323–339 (1998).

    Article  Google Scholar 

  61. Caballero-Gill, R. P., Herbert, T. D. & Dowsett, H. J. 100-kyr paced climate change in the Pliocene Warm Period, southwest Pacific. Paleoceanogr. Paleoclimatol. 34, 524–545 (2019).

    Article  Google Scholar 

  62. Patterson, M. O. et al. A southwest Pacific perspective on long-term global trends in Pliocene–Pleistocene stable isotope records. Paleoceanogr. Paleoclimatol. 33, 825–839 (2018).

    Article  Google Scholar 

  63. Tian, J., Wang, P., Cheng, X. & Li, Q. Astronomically tuned Plio–Pleistocene benthic δ18O record from South China Sea and Atlantic–Pacific comparison. Earth Planet. Sci. Lett. 203, 1015–1029 (2002).

    Article  CAS  Google Scholar 

  64. Jian, Z. et al. Pliocene–Pleistocene stable isotope and paleoceanographic changes in the northern South China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, 425–442 (2003).

    Article  Google Scholar 

  65. Herbert, T. D., Peterson, L. C., Lawrence, K. T. & Liu, Z. Tropical ocean temperatures over the past 3.5 million years. Science 328, 1530–1534 (2010).

    Article  CAS  Google Scholar 

  66. Herbert, T. D., Caballero-Gill, R. & Novak, J. B. A revised mid-Pliocene composite section centered on the M2 glacial event for ODP site 846. Climate 17, 1385–1394 (2021).

    Google Scholar 

  67. Tierney, J. E., Haywood, A. M., Feng, R., Bhattacharya, T. & Otto-Bliesner, B. L. Pliocene warmth consistent with greenhouse gas forcing. Geophys. Res. Lett. 46, 9136–9144 (2019).

    Article  Google Scholar 

  68. York, D., Evensen, N. M., Martı́nez, M. L. & De Basabe Delgado, J. Unified equations for the slope, intercept, and standard errors of the best straight line. Am. J. Phys. 72, 367–375 (2004).

    Article  Google Scholar 

  69. York, D. Least squares fitting of a straight line with correlated errors. Earth Planet. Sci. Lett. 5, 320–324 (1968).

    Article  Google Scholar 

  70. Wehr, R. & Saleska, S. R. The long-solved problem of the best-fit straight line: application to isotopic mixing lines. Biogeosciences 14, 17–29 (2017).

    Article  Google Scholar 

  71. Mahon, K. I. The new ‘York’ regression: application of an improved statistical method to geochemistry. Int. Geol. Rev. 38, 293–303 (1996).

    Article  Google Scholar 

  72. Müller, P. J., Kirst, G., Ruhland, G., Von Storch, I. & Rosell-Melé, A. Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60° N–60° S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998).

    Article  Google Scholar 

  73. Novak, J., Caballero-Gill, R. P., Rose, R., Herbert, T. D. & Dowsett, H. J. Multiproxy paleoceanogrpahic dataset from ODP site 883 and 887 and compiled mid Piacenzian benthic foraminiferal stable carbon isotope data from 23 IODP/ODP/DSDP sites. PANGAEA https://doi.org/10.1594/PANGAEA.967342 (2024).

  74. Novak, J., Caballero-Gill, R. P., Rose, R., Herbert, T. D. & Dowsett, H. J. Data from ODP Leg 145 Sites 883, 887, compiled MPWP benthic stable carbon isotopes, and example code. figshare https://doi.org/10.6084/m9.figshare.25066535 (2024).

Download references

Acknowledgements

We thank A. Tzanova, A. Martin, K. Zimmerman and S. Clemens for their support analysing samples at Brown University. We thank B. Dreyer for support analysing samples in the Marine Analytical Laboratory at the University of California, Santa Cruz. We thank N. J. Burls for providing the model output from ref. 6. J.B.N. thanks K. Delong, A. C. Ravelo, P. J. Polissar, K. Thirumalai and J. T. Abell for helpful discussions and guidance on North Pacific palaeoceanography and stratigraphic correlation. J.B.N. thanks P. Daniel for coding support. R.P.C.-G. thanks the GeoLatinas impetu community for co-working and co-writing support. This research used samples and data provided by the International Ocean Discovery Program (IODP). This work was funded by the National Science Foundation through grants 1545859 (T.D.H.), 1459280 (T.D.H.) and 1602331 (T.D.H.) and the US Geological Survey Climate R&D Program (H.J.D.). Any use of trade, firm or product names is for descriptive purposes only and does not imply the endorsement of the US Government.

Author information

Authors and Affiliations

Authors

Contributions

J.B.N. wrote the original manuscript. J.B.N., R.P.C.-G., R.M.R., T.D.H. and H.J.D. edited and refined the final paper draft. R.P.C.-G., R.M.R. and J.B.N. conducted sample analyses. J.B.N., R.P.C.-G. and T.D.H. collectively worked on the stratigraphy and age model. J.B.N. analysed the data and compiled published datasets. T.D.H. was the principal investigator. R.P.C.-G., T.D.H. and H.J.D. designed the experiment. T.D.H. and H.J.D. procured the funding that supported this project.

Corresponding author

Correspondence to Joseph B. Novak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks William Gray, Patrick Rafter, Hongrui Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Alireza Bahadori and James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Supplementary information

Supplementary Information

Supplementary Text 1.1–1.4, Figs. 1–9 and Tables 1 and 2.

Supplementary Code 1

Example code for the random resampling technique used to estimate uncertainty in our deep ocean δ13CDIC stacks.

Supplementary Data 1

All new and compiled data associated with the paper, including splice tables, age models and additional notes on their use.

Source data

Source Data 1

Western North Pacific benthic stable carbon isotope data and core-top anomalies.

Source Data 2

Benthic stable carbon isotope data compiled from 23 DSDP/ODP/IODP drill sites.

Source Data 3

Estimated deep Pacific and deep Atlantic δ13CDIC and Δδ13CDIC.

Source Data 4

Alkenone and calcium carbonate mass accumulation rate data from ODP 883. Biogenic opal and calcium carbonate mass accumulation rate data from ODP 882. C. wuellerstorfi B/Ca-inferred Δ[CO32−] from IODP U1489. Alkenone SSTs from ODP 883 and 882.

Source Data 5

Benthic stable carbon isotope data from the western and eastern North Pacific.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novak, J.B., Caballero-Gill, R.P., Rose, R.M. et al. Isotopic evidence against North Pacific Deep Water formation during late Pliocene warmth. Nat. Geosci. 17, 795–802 (2024). https://doi.org/10.1038/s41561-024-01500-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-024-01500-7

  • Springer Nature Limited

Navigation