Skip to main content

Advertisement

Log in

Ex vivo tools for the clonal analysis of zebrafish hematopoiesis

  • Protocol
  • Published:

From Nature Protocols

View current issue Submit your manuscript

Abstract

This protocol describes the ex vivo characterization of zebrafish hematopoietic progenitors. We show how to isolate zebrafish hematopoietic cells for cultivation and differentiation in colony assays in semi-solid media. We also describe procedures for the generation of recombinant zebrafish cytokines and for the isolation of carp serum, which are essential components of the medium required to grow zebrafish hematopoietic cells ex vivo. The outcome of these clonal assays can easily be evaluated using standard microscopy techniques after 3–10 d in culture. In addition, we describe how to isolate individual colonies for further imaging and gene expression profiling. In other vertebrate model organisms, ex vivo assays have been crucial for elucidating the relationships among hematopoietic stem cells (HSCs), progenitor cells and their mature progeny. The present protocol should facilitate such studies on cells derived from zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Flowchart of the described experimental procedures.
Figure 2: Gating strategy for the isolation of specific cell populations via FACS.
Figure 3: Dissection of zebrafish kidney.
Figure 4: Number of HSPCs in zebrafish WKM.
Figure 5: Representative images of particular colonies grown in methylcellulose.
Figure 6: Enumeration of colonies from fractionated WKM cells and cd41medium cells.

Similar content being viewed by others

References

  1. de Jong, J.L. & Zon, L.I. Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu. Rev. Genet. 39, 481–501 (2005).

    Article  CAS  Google Scholar 

  2. Carroll, K.J. & North, T.E. Oceans of opportunity: exploring vertebrate hematopoiesis in zebrafish. Exp. Hematol. 42, 684–696 (2014).

    Article  CAS  Google Scholar 

  3. Boatman, S. et al. Assaying hematopoiesis using zebrafish. Blood Cells Mol. Dis. 51, 271–276 (2013).

    Article  CAS  Google Scholar 

  4. Stewart, A.M., Braubach, O., Spitsbergen, J., Gerlai, R. & Kalueff, A.V. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci. 37, 264–278 (2014).

    Article  CAS  Google Scholar 

  5. Goessling, W. & North, T.E. Repairing quite swimmingly: advances in regenerative medicine using zebrafish. Dis. Model Mech. 7, 769–776 (2014).

    Article  Google Scholar 

  6. White, R., Rose, K. & Zon, L. Zebrafish cancer: the state of the art and the path forward. Nat. Rev. Cancer 13, 624–636 (2013).

    Article  CAS  Google Scholar 

  7. Yen, J., White, R.M. & Stemple, D.L. Zebrafish models of cancer: progress and future challenges. Curr. Opin. Genet. Dev. 24, 38–45 (2014).

    Article  CAS  Google Scholar 

  8. Bertrand, J.Y. et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108–111 (2010).

    Article  CAS  Google Scholar 

  9. Espin-Palazon, R. et al. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell 159, 1070–1085 (2014).

    Article  CAS  Google Scholar 

  10. Kim, A.D. et al. Discrete Notch signaling requirements in the specification of hematopoietic stem cells. EMBO J. 33, 2363–2373 (2014).

    Article  CAS  Google Scholar 

  11. Kim, A.D., Stachura, D.L. & Traver, D. Cell signaling pathways involved in hematopoietic stem cell specification. Exp. Cell Res. 329, 227–233 (2014).

    Article  CAS  Google Scholar 

  12. Bock, T.A. Assay systems for hematopoietic stem and progenitor cells. Stem Cells 15, 185–195 (1997).

    Article  Google Scholar 

  13. Beug, H., Steinlein, P., Bartunek, P. & Hayman, M.J. Avian hematopoietic cell culture: in vitro model systems to study oncogenic transformation of hematopoietic cells. Methods Enzymol. 254, 41–76 (1995).

    Article  CAS  Google Scholar 

  14. Alexander, W.S. & Begley, C.G. Thrombopoietin in vitro and in vivo. Cytokines Cell Mol. Ther. 4, 25–34 (1998).

    CAS  PubMed  Google Scholar 

  15. Stachura, D.L. et al. Zebrafish kidney stromal cell lines support multilineage hematopoiesis. Blood 114, 279–289 (2009).

    Article  CAS  Google Scholar 

  16. Stachura, D.L. et al. Clonal analysis of hematopoietic progenitor cells in the zebrafish. Blood 118, 1274–1282 (2011).

    Article  CAS  Google Scholar 

  17. Stachura, D.L. & Traver, D. Cellular dissection of zebrafish hematopoiesis. Methods Cell Biol. 101, 75–110 (2011).

    Article  Google Scholar 

  18. Svoboda, O. et al. Dissection of vertebrate hematopoiesis using zebrafish thrombopoietin. Blood 124, 220–228 (2014).

    Article  CAS  Google Scholar 

  19. Moore, M.A., Williams, N. & Metcalf, D. In vitro colony formation by normal and leukemic human hematopoietic cells: characterization of the colony-forming cells. J. Natl Cancer Inst. 50, 603–623 (1973).

    Article  CAS  Google Scholar 

  20. McCulloch, E.A. Stem cells in normal and leukemic hemopoiesis (Henry Stratton Lecture, 1982). Blood 62, 1–13 (1983).

    CAS  PubMed  Google Scholar 

  21. Coulombel, L. Identification of hematopoietic stem/progenitor cells: strength and drawbacks of functional assays. Oncogene 23, 7210–7222 (2004).

    Article  CAS  Google Scholar 

  22. Quelen, C. et al. Identification of a transforming MYB-GATA1 fusion gene in acute basophilic leukemia: a new entity in male infants. Blood 117, 5719–5722 (2011).

    Article  CAS  Google Scholar 

  23. Stachura, D.L. et al. The zebrafish granulocyte colony-stimulating factors (Gcsfs): 2 paralogous cytokines and their roles in hematopoietic development and maintenance. Blood 122, 3918–3928 (2013).

    Article  CAS  Google Scholar 

  24. Surdziel, E. et al. Enforced expression of miR-125b affects myelopoiesis by targeting multiple signaling pathways. Blood 117, 4338–4348 (2011).

    Article  CAS  Google Scholar 

  25. Gerlach, G.F., Schrader, L.N. & Wingert, R.A. Dissection of the adult zebrafish kidney. J. Vis. Exp. 54, 2839–2844 (2011).

    Google Scholar 

  26. Traver, D. et al. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat. Immunol. 4, 1238–1246 (2003).

    Article  CAS  Google Scholar 

  27. Lin, H.F. et al. Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood 106, 3803–3810 (2005).

    Article  CAS  Google Scholar 

  28. Renshaw, S.A. et al. A transgenic zebrafish model of neutrophilic inflammation. Blood 108, 3976–3978 (2006).

    Article  CAS  Google Scholar 

  29. Davidson, A.J. & Zon, L.I. The 'definitive' (and 'primitive') guide to zebrafish hematopoiesis. Oncogene 23, 7233–7246 (2004).

    Article  CAS  Google Scholar 

  30. Murtha, J.M., Qi, W. & Keller, E.T. Hematologic and serum biochemical values for zebrafish (Danio rerio). Comp. Med. 53, 37–41 (2003).

    CAS  PubMed  Google Scholar 

  31. Pedroso, G.L. et al. Blood collection for biochemical analysis in adult zebrafish. J. Vis. Exp. 3865–3868 (2012).

  32. Napier, I., Ponka, P. & Richardson, D.R. Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood 105, 1867–1874 (2005).

    Article  CAS  Google Scholar 

  33. Katzenback, B.A. & Belosevic, M. Molecular and functional characterization of kita and kitla of the goldfish (Carassius auratus L.). Dev. Comp. Immunol. 33, 1165–1175 (2009).

    Article  CAS  Google Scholar 

  34. Liongue, C., Hall, C.J., O'Connell, B.A., Crosier, P. & Ward, A.C. Zebrafish granulocyte colony-stimulating factor receptor signaling promotes myelopoiesis and myeloid cell migration. Blood 113, 2535–2546 (2009).

    Article  CAS  Google Scholar 

  35. Paffett-Lugassy, N. et al. Functional conservation of erythropoietin signaling in zebrafish. Blood 110, 2718–2726 (2007).

    Article  CAS  Google Scholar 

  36. Santos, M.D., Yasuike, M., Hirono, I. & Aoki, T. The granulocyte colony-stimulating factors (CSF3s) of fish and chicken. Immunogenetics 58, 422–432 (2006).

    Article  CAS  Google Scholar 

  37. Meyer, A. & Schartl, M. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell Biol. 11, 699–704 (1999).

    Article  CAS  Google Scholar 

  38. Meyer, A. & Van de Peer, Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 27, 937–945 (2005).

    Article  CAS  Google Scholar 

  39. Chen, K. et al. The evaluation of rapid cooling as an anesthetic method for the zebrafish. Zebrafish 11, 71–75 (2014).

    Article  Google Scholar 

  40. Wilson, J.M., Bunte, R.M. & Carty, A.J. Evaluation of rapid cooling and tricaine methanesulfonate (MS222) as methods of euthanasia in zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 48, 785–789 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pugach, E.K., Li, P., White, R. & Zon, L. Retro-orbital injection in adult zebrafish. J. Vis. Exp. 1645–1648 (2009).

  42. Hall, C., Flores, M.V., Storm, T., Crosier, K. & Crosier, P. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev. Biol. 7, 42 (2007).

    Article  Google Scholar 

  43. Ellett, F., Pase, L., Hayman, J.W., Andrianopoulos, A. & Lieschke, G.J. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117, 49–56 (2011).

    Article  Google Scholar 

  44. Bertrand, J.Y., Kim, A.D., Teng, S. & Traver, D. CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. Development 135, 1853–1862 (2008).

    Article  CAS  Google Scholar 

  45. Balla, K.M. et al. Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood 116, 3944–3954 (2010).

    Article  CAS  Google Scholar 

  46. Wittamer, V., Bertrand, J.Y., Gutschow, P.W. & Traver, D. Characterization of the mononuclear phagocyte system in zebrafish. Blood 117, 7126–7135 (2011).

    Article  CAS  Google Scholar 

  47. Gardiner, M.R., Gongora, M.M., Grimmond, S.M. & Perkins, A.C. A global role for zebrafish klf4 in embryonic erythropoiesis. Mech. Dev. 124, 762–774 (2007).

    Article  CAS  Google Scholar 

  48. Tiedke, J., Gerlach, F., Mitz, S.A., Hankeln, T. & Burmester, T. Ontogeny of globin expression in zebrafish (Danio rerio). J. Comp. Physiol. B 181, 1011–1021 (2011).

    Article  CAS  Google Scholar 

  49. Kondo, H. & Watabe, S. Growth promoting effects of carp serum components on goldfish culture cells. Fisheries Sci. 72, 4 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports—Program NPU I (LO1419), the Czech Science Foundation (16-21024S to P.B.), the Charles University Grant Agency (598712 to O.S.), and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) at the National Institutes of Health (NIH; K01-DK087814-01A1 to D.L.S.).

Author information

Authors and Affiliations

Authors

Contributions

O.S., D.L.S., O.M., and P.B. performed the research; O.S., D.L.S., and P.B. designed the research; O.S., D.L.S., and P.B. wrote the manuscript; and L.I.Z. and D.T. provided critical reagents for the work, as well as suggestions on experimental design.

Corresponding author

Correspondence to Petr Bartunek.

Ethics declarations

Competing interests

L.I.Z. is a founder and stockholder of Fate, a founder and stockholder of Scholar Rock, and a scientific advisor for Stemgent.

Integrated supplementary information

Supplementary Figure 1 Selection of optimal fish sera that support growth and survival of zebrafish HSPCs.

Representative images of cells, grown in the absence of fish serum (no serum) or in the presence of either bass, carp, pike or trout serum for three days. Suspension cells were visualized using phase contrast microscopy and adherent cells were stained with May-Grünwald Giemsa. Scale bars (left) represent 100 um.

Supplementary Figure 2 Blood collection from euthanized carp.

Needle should be positioned perpendicularly to the ventral surface and in the midline between pectoral fins. Pull the syringe plunger out to collect the blood.

Supplementary Figure 3 Experimental strategy for recombinant protein expression using E. coli or baculovirus expression system.

Amplify the mature coding sequence (red box) using polymerase chain reaction (PCR). Ligate the PCR product into the prokaryotic expression vector pQE. This leads to introduction of 6xHis sequence within the CDS (violet box). Optionally use EcoRI and PstI restriction enzymes to transfer the insert containing 6xHis and mature CDS into the baculovirus expression vector pAcGP67.

Supplementary Figure 4 Plucking a colony from methylcellulose using a fine 30-μl tip.

Find the colony, to be plucked out from the methylcellulose. Use the 30ul tip and reach the bottom of the plate. Move the tip above the colony and suck off the colony inside the tip using the pipetman. Photomicrograph was taken at original magnification x40, scale bar represents 500um.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svoboda, O., Stachura, D., Machonova, O. et al. Ex vivo tools for the clonal analysis of zebrafish hematopoiesis. Nat Protoc 11, 1007–1020 (2016). https://doi.org/10.1038/nprot.2016.053

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.053

  • Springer Nature Limited

This article is cited by

Navigation