Skip to main content
Log in

Design and Construction of a Low-Force Stylus Probe for On-machine Tool Cutting Edge Measurement

  • Original Article
  • Published:
Nanomanufacturing and Metrology Aims and scope Submit manuscript

Abstract

A new on-machine profiler employing a cantilever beam was proposed and developed to measure the sharp micro-cutting edges of precision cutting tools with low measuring force of 0.1 mN. The proposed profiler consists of a probe unit and a positioning unit. The probe unit employs a stylus mounted on the free end of a hollow triangular cantilever beam and a laser displacement sensor to detect the deflection of the cantilever beam. The positioning unit consists of two single-axis DC servo motor stages for precise positioning of the probe unit. The cantilever is designed with the assistance of the finite element method. In order to demonstrate the feasibility of the proposed measurement system, experiments are conducted and the measurement result for a micro-cutting edge is compared with that by a commercial profiler. Furthermore, a method to compensate for the measurement error caused by the lateral displacement of the cantilever beam is proposed. The compensated measurement results show good agreement within ± 2 μm with those obtained by the commercial profiler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Krebs FC, Fyenbo J, Jorgensen M (2010) Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing. J Mater Chem 20:8994–9001

    Article  Google Scholar 

  2. Makela T, Haatainen T (2012) Roll-to-roll pilot nanoimprinting process for backlight devices. Microelectron Eng 97:89–91

    Article  Google Scholar 

  3. Asai T, Motoki T, Gao W, Ju BF, Kiyono S (2007) An AFM-based edge profile measuring instrument for diamond cutting tools. Int J Precis Eng Manuf 8(2):54–58

    Google Scholar 

  4. Gao W, Haitjema H, Fang FZ, Leach RK, Cheung CF, Savio E, Linares JM (2019) On-machine and in-process surface metrology for precision manufacturing. CIRP Ann Manuf Technol 68(2):843–866

    Article  Google Scholar 

  5. Chen YL, Cai Y, Xu M, Shimizu Y, Ito S, Gao W (2017) An edge reversal method for precision measurement of cutting edge radius of single point diamond tools. Precis Eng 50:380–387

    Article  Google Scholar 

  6. Kim KD, Chung SC (2003) On-machine inspection system: accuracy improvement using an artifact. J Manuf Syst 22(4):299–308

    Article  Google Scholar 

  7. Zhu WL, Yang S, Ju BF, Jiang JC, Sun AY (2015) On-machine measurement of a slow slide servo diamond-machined 3D microstructure with a curved substrate. Meas Sci Technol 26(7):075003

    Article  Google Scholar 

  8. Gao W, Araki T, Kiyono S, Okazaki Y, Yamanaka M (2003) Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder. Precis Eng 27:289–298

    Article  Google Scholar 

  9. Gao W, Tano M, Sato S, Kiyono S (2006) On-machine measurement of a cylindrical surface with sinusoidal micro-structures by an optical slope sensor. Precis Eng 30:274–279

    Article  Google Scholar 

  10. Matsukuma H, Asumi Y, Nagaoka M, Shimizu Y, Gao W (2021) An autocollimator with a mid-infrared laser for angular measurement of rough surfaces. Precis Eng 67:89–99

    Article  Google Scholar 

  11. Ibaraki S, Kimura Y, Nagai Y, Nishikawa S (2015) Formulation of influence of machine geometric errors on five-axis on-machine scanning measurement by using a laser displacement sensor. J Manuf Sci Eng 137(2):021013

    Article  Google Scholar 

  12. Wilson T, Sheppard C (1984) Theory and practice of scanning optical microscopy. Academic Press, London

    Google Scholar 

  13. Yang S, Zhang G (2018) A review of interferometry for geometric measurement. Meas Sci Technol 29(10):102001

    Article  Google Scholar 

  14. Nomura T, Yoshikawa K, Tashiro H, Nomura T, Yoshikawa K, Tashiro H, Takeuchi I, Ozawa N, Okazaki Y, Suzuki M, Kobayashi F, Usuki M (1992) On-machine shape measurement of workpiece surface with Fizeau interferometer. Precis Eng 14(3):155–159

    Article  Google Scholar 

  15. Leach R (2011) Optical measurement of surface topography. Springer, Berlin

    Book  Google Scholar 

  16. Gomez C, Su R, Groot P, Leach R (2020) Noise reduction in coherence scanning interferometry for surface topography measurement. Nanomanufac Metrol 3:68–76

    Article  Google Scholar 

  17. Byrne G, Dornfeld D, Denkena B (2003) Advancing cutting technology. CIRP Ann Manuf Technol 52(2):483–507

    Article  Google Scholar 

  18. Brown CA, Savary G (1991) Describing ground surface texture using contact profilometry and fractal analysis. Wear 141(2):211–226

    Article  Google Scholar 

  19. Fang KC, Li RJ, Xu P (2019) Design and verification of micro/nano-probes for coordinate measuring machines. Nanomanuf Metrol 2:1–15

    Article  Google Scholar 

  20. Weckenmann A, Estler T, Peggs G, McMurtry D (2004) Probing systems in dimensional metrology. CIRP Ann Manuf Technol 53(2):657–684

    Article  Google Scholar 

  21. Haitjema H, Pril WO, Schellekens PHJ (2001) Development of a silicon-based nanoprobe system for 3-D measurements. CIRP Ann Manuf Technol 50(1):365–368

    Article  Google Scholar 

  22. Fang FZ, Zhang XD, Weckenmann A, Zhang GX, Evans C (2013) Manufacturing and measurement of freeform optics. CIRP Ann Manuf Technol 62(2):823–846

    Article  Google Scholar 

  23. Gao W, Kim SW, Bosse H, Haitjema H, Chen YL, Lu XD, Knapp W, Weckenmann A, Estler WT, Kunzmann H (2015) Measurement technologies for precision positioning. CIRP Ann Manuf Technol 64(2):773–796

    Article  Google Scholar 

  24. Danzebrink HU, Koenders L, Wilkening G, Yacoot A, Kunzmann H (2006) Advances in scanning force microscopy for dimensional metrology. CIRP Ann Manuf Technol 55(2):841–878

    Article  Google Scholar 

  25. Gao W, Motoki T, Kiyono S (2006) Nanometer edge profile measurement of diamond cutting tools by atomic force microscope with optical alignment sensor. Precis Eng 30(4):396–405

    Article  Google Scholar 

  26. Gao W, Asai T, Arai Y (2009) Precision and fast measurement of 3D cutting edge profiles of single point diamond micro-tools. CIRP Ann Manuf Technol 58(1):451–454

    Article  Google Scholar 

  27. Gao W, Aoki J, Ju BF, Kiyono S (2007) Surface profile measurement of a sinusoidal grid using an atomic force microscope on a diamond turning machine. Precis Eng 31(3):304–309

    Article  Google Scholar 

  28. Savio E, Marinello F, Bariani P, Carmignato S (2007) Feature-oriented measurement strategy in atomic force microscopy. CIRP Ann Manuf Technol 56(1):557–560

    Article  Google Scholar 

  29. Peggs GN, Lewis AJ, Oldfield S (1999) Design for a compact high-accuracy CMM. CIRP Ann Manuf Technol 48(1):417–420

    Article  Google Scholar 

  30. Kueng A, Meli F, Thalmann R (2007) Ultraprecision micro-CMM using a low force 3D touch probe. Meas Sci Technol 18(2):319

    Article  Google Scholar 

  31. Weckenmann A, Peggs G, Hoffmann J (2006) Probing systems for dimensional micro-and nano-metrology. Meas Sci Technol 17(3):504

    Article  Google Scholar 

  32. Sekine S, Osawa S, Shimizu Y, Ito S, Gao W, Kubota K, Kato A, Arakawa K, Yasutake M (2013) Design of a stylus displacement sensor with a low measuring force. In: Proceedings of international conference on leading edge manufacturing in 21st century: LEM21

  33. JIS B 0721 (2004) Edge quality and its grades for material removal parts

  34. https://www.sumitool.com/en/downloads/cutting-tools/general-catalog/assets/pdf/GC_K_en.pdf

  35. https://www.bangslabs.com/sites/default/files/imce/docs/TSD%200021%20Material%20Properties%20Web.pdf

  36. https://www.physikinstrumente.com/en/products/linear-stages/stages-with-stepper-dc-brushless-dc-bldc-motors/m-110-m-111-m-112-compact-micro-translation-stage-701650/#specification

Download references

Acknowledgements

This research was supported by the Japan Society for the Promotion of Sciences (JSPS) KAKENHI (15H05759, 20H00211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiraku Matsukuma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsukuma, H., Wen, B., Osawa, S. et al. Design and Construction of a Low-Force Stylus Probe for On-machine Tool Cutting Edge Measurement. Nanomanuf Metrol 3, 282–291 (2020). https://doi.org/10.1007/s41871-020-00084-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41871-020-00084-1

Keywords

Navigation