We consider a polynomial map \(\varvec{f}=(f^1,\dots ,f^n):\mathbb {K}^m\rightarrow \mathbb {K}^n\), defined by

$$\begin{aligned} f^j&=\mathop {\mathrm {\sum }}_{\varvec{\nu }}c^j_{\varvec{\nu }}\varvec{x}^{\varvec{\nu }},\ c^j_{\varvec{\nu }}\in \mathbb {K},\ \varvec{x}^{\varvec{\nu }}=(x_1)^{\nu _1}\cdots (x_m)^{\nu _m},\nonumber \\ \varvec{x}&=(x_1,\dots ,x_m), \varvec{\nu }=(\nu _1,\dots ,\nu _m), \end{aligned}$$
(0.1)

where \(\mathbb {K}=\mathbb {C}\) or \(\mathbb {R}\). We say that a point \(\varvec{y}_0\in \mathbb {K}^n\) is proper for \(\varvec{f}\) (or a proper point of \(\varvec{f}\)) if, for any (algebraic) arc \(\varvec{x}(t):\mathbb {K}^*,0\rightarrow \mathbb {K}^m\), \(\mathbb {K}^*=\mathbb {K}{\setminus }\{0\}\), the following condition holds:

$$\begin{aligned} \displaystyle {\lim _{t\rightarrow 0}\varvec{f}(\varvec{x}(t))=\varvec{y}_0}\ \Longrightarrow \ \displaystyle {\lim _{t\rightarrow 0}\varvec{x}(t)}\ \text { exists in }\mathbb {K}^m. \end{aligned}$$

Let \(S_{\varvec{f}}\) denote the set of points \(\varvec{y}_0\) in \(\mathbb {K}^n\) which are not proper points of \(\varvec{f}\). We say that \(\varvec{f}:\mathbb {K}^m\rightarrow \mathbb {K}^n\) is proper if \(S_{\varvec{f}}=\emptyset \).

In this paper, we are looking for a method to determine whether a point \(\varvec{y}_0\) in \(\mathbb {K}^n\) is proper or not. The first statement is Theorem 1.3, which gives a complete description of \(S_{\varvec{f}}\) when \(\varvec{f}\) satisfies certain non-degeneracy condition with respect to the Newton polyhedron of \(\varvec{f}\) (see (1.5) in Theorem 1.3). Our approach is based on simple and careful analysis of \(\varvec{f}\) along arcs \(\varvec{x}(t)\), which suggests us usefulness of using arcs to describe the set \(S_{\varvec{f}}\), even though \(\varvec{f}\) is degenerate (Remark 2.6). In Sect. 3, we describe a relative version of our discussion. We present several examples to show how our method works in Sect. 4.

The set \(S_{\varvec{f}}\) was introduced by Jelonek [4, 5] and showed that it is empty or a uniruled hypersurface of \(\mathbb {K}^n\) when \(\mathbb {K}=\mathbb {C}\) and \(m=n\). It is thus an interesting problem to seek a method to describe \(S_{\varvec{f}}\) in several concrete examples. Chen et al. [2] have investigated the bifurcation locus of a polynomial map \(\mathbb {K}^m\rightarrow \mathbb {K}^n\), \(m\ge n\), with respect to Newton polyhedron. The bifurcation locus is the minimal locus in the target where the map is not locally trivial, and they show a supset of the bifurcation locus under their non-degeneracy condition. Jelonek and Lasoń [6] called \(S_{\varvec{f}}\) as the non-properness set of \(\varvec{f}\) and showed that it is covered by parametric curves of degree at most \(d-1\) where d is the algebraic degree of \(\varvec{f}\) for \(\mathbb {K}=\mathbb {C}\). Their words “covered by parametric curves” mean that the set \(S_{\varvec{f}}\) has a “\(\mathbb {C}\)-ruling”. They also discuss real counterpart of their results. Recently, El Hilany [3] has investigated to describe the set \(S_{\varvec{f}}\) via the Newton polyhedra of \(\varvec{f}\). He calls \(S_{\varvec{f}}\) as Jelonek set. He has introduced the notion of T- maps and claimed that \(S_{\varvec{f}}\) is described using only the data of \(\varvec{f}\) at several faces of its Newton polyhedra. Comparing with these results, our method provides much precise information on the set \(S_{\varvec{f}}\) with simple description. For example, Theorem 1.3 shows an explicit decomposition of \(S_{\varvec{f}}\) providing an explicit ruling of each component in many cases. In Sect. 3, we present a relative version of our theorem. Namely, we consider the non-properness set \(S_{\varvec{f}|_X}\) for \(\varvec{f}|_X:X\rightarrow \mathbb {K}^n\) where \(\varvec{f}=(f^1,\dots ,f^n):\mathbb {K}^m\rightarrow \mathbb {K}^n\) is a certain polynomial map and \(X=(f^{n-k+1},\dots ,f^n)^{-1}(c)\), \(c\in \mathbb {K}^k\). In Sect. 5, we present tricks to describe \(S_{\varvec{f}}\) for certain degenerate \(\varvec{f}\).

We say some words for the definition of \(S_{\varvec{f}}\) here. We compactify \(\varvec{f}\) as \(\bar{\varvec{f}}:X\rightarrow Y\) where X and Y are suitable projective manifolds. We set \(X_\infty =X{\setminus }\mathbb {K}^m\), \(Y_\infty =Y{\setminus }\mathbb {K}^n\) and we can assume that \(X_\infty \) and \(Y_\infty \) are simple normal crossing divisors. Then, the condition \(\varvec{y}_0\in S_{\varvec{f}}\) is equivalent to one of the following conditions.

  • There exists an algebraic arc \(\varvec{x}(t):\mathbb {K},0\rightarrow X\), such that

    $$\begin{aligned} \displaystyle {\lim _{t\rightarrow 0}\varvec{x}(t)\in X_\infty },\quad \text { and }\quad \displaystyle {\lim _{t\rightarrow 0}\varvec{f}(\varvec{x}(t))=\varvec{y}_0}. \end{aligned}$$
    (0.2)
  • There exists an analytic arc \(\varvec{x}(t):\mathbb {K},0\rightarrow X\) defined near 0 with (0.2).

  • There exists a sequence \(\{\varvec{x}_k\}\) in X, such that \(\displaystyle {\lim _{k\rightarrow \infty }\varvec{x}_k}\in X_\infty \) and \(\displaystyle {\lim _{k\rightarrow \infty }\varvec{f}(\varvec{x}_k)=\varvec{y}_0}\).

The last condition is equivalent to the condition that \(\varvec{y}_0\) is not a proper point of f as a continuous map between metric spaces. We also have

$$\begin{aligned} S_{\varvec{f}}=\bar{\varvec{f}}(X_\infty )\cap \mathbb {K}^n=\bar{\varvec{f}}(X_\infty )\cap (Y{\setminus } Y_\infty ). \end{aligned}$$

Since \(\bar{\varvec{f}}\) is proper, the set \(\bar{\varvec{f}}(X_\infty )\) is closed in Y and we obtain that \(S_{\varvec{f}}\) is closed.

When \(\mathbb {K}=\mathbb {C}\) and \(m>n\), Noether’s normalization asserts that, for any \(\varvec{y}\in \mathbb {C}^n\), there is a linear surjection \(p:\varvec{f}^{-1}(\varvec{y})\rightarrow \mathbb {C}^d\), \(0\le d\le m\), where \(d=\dim _{\mathbb {C}}\varvec{f}^{-1}(\varvec{y})\). If \(\varvec{f}^{-1}(\varvec{y})\) is compact, then \(p(\varvec{f}^{-1}(\varvec{y}))=\mathbb {C}^d\) is compact and we obtain \(d=0\). Since \(d\ge m-n\), we conclude that \(m\le n\). This implies that \(S_{\varvec{f}}\) is the closure of the image of \(\varvec{f}\) whenever \(m>n\). Therefore, we assume \(m\le n\) when \(\mathbb {K}=\mathbb {C}\).

When \(\mathbb {K}=\mathbb {C}\), Jelonek’s result asserts that \(S_{\varvec{f}}\) is Zariski closed. However, if \(\mathbb {K}=\mathbb {R}\), \(S_{\varvec{f}}\) may not be Zariski closed (for example, \(S_{\varvec{f}}=\{(0,y_2)\in \mathbb {R}^{2}: y_2\ge 0\}\) for \(\varvec{f}:\mathbb {R}^2\rightarrow \mathbb {R}^2\), \((x_1,x_2)\mapsto (x_1,x_1^2x_2^2)\)).

Throughout the paper, we use the following notational convention:

$$\begin{aligned} \mathbb {K}^J\!=\!\{(x_1,\dots ,x_n)\in \mathbb {K}^n:x_i=0, i\not \in J\},\ \mathbb {Z}^J\!=\!\{(\nu _1,\dots ,\nu _n)\in \mathbb {Z}^n:\nu _i\!=\!0, i\not \in J\}. \end{aligned}$$

for a subset J of \(\{1,\dots ,n\}\). We set \(\mathbb {Z}^J_{\ge 0}=\{(\nu _1,\dots ,\nu _n)\in \mathbb {Z}^J:\nu _i\ge 0, i\in J\}\). We also set \((\mathbb {Z}_{\ge 0})^n=\{(\nu _1,\dots ,\nu _n)\in \mathbb {Z}^n:\nu _i\ge 0, i=1,\dots ,n\}\). We often abbreviate \(\mathbb {Z}_{\ge 0}\) as \(\mathbb {Z}_\ge \) following custom. We identify \(\mathbb {K}^n\) with \(\mathbb {K}^J\times \mathbb {K}^{J^c}\) where \(J^c=\{1,\dots ,n\}{\setminus } J\) without notice.

1 Newton Polyhedra

Let \(\Delta (f^j)\) denote Newton polyhedron of \(f^j\), the convex hull of the set \(\{\varvec{\nu }:c^j_{\varvec{\nu }}\ne 0\}\), under the notation in (0.1). For \(\varvec{p}=(p_1,\dots ,p_m)\in \mathbb {Z}^m\), we define

$$\begin{aligned} d_j(\varvec{p})&=-\min \{\langle \varvec{p},\varvec{\nu }\rangle :\varvec{\nu }\in \Delta (f^j)\}, \end{aligned}$$
(1.1)
$$\begin{aligned} \gamma _j(\varvec{p})&=\{\varvec{\nu }\in \Delta (f^j):\langle \varvec{p},\varvec{\nu }\rangle =-d_j(\varvec{p})\}. \end{aligned}$$
(1.2)

We call \(\gamma _j(\varvec{p})\) the face of \(\Delta (f^j)\) supported by \(\varvec{p}\).

We say which is a face of \(\varvec{\Delta }(\varvec{f})=(\Delta (f^1),\dots ,\Delta (f^n))\) if there exist \(\varvec{p}\in \mathbb {Z}^m\), so that \(\gamma _j\) is a face of \(\Delta (f^j)\) supported by \(\varvec{p}\). We denote

When we need to mention \(\varvec{f}\) explicitly, we denote them by , \(\gamma _j(\varvec{f};\varvec{p})\), and so on. We consider Minkowski sum \(\Delta (\varvec{f})=\Delta (f^1)+\cdots +\Delta (f^n)\) and its dual fan \(\Delta ^*\), which we identify with the set of polyhedral cones. Note that \(\gamma (\varvec{p})=\gamma _1(\varvec{p})+\cdots +\gamma _n(\varvec{p})\) is a face of \(\Delta (\varvec{f})\). We denote

Lemma 1.1

\(\iff \) \(\gamma (\varvec{p})=\gamma (\varvec{q})\).

Proof

\(\Longrightarrow \)” part is clear, since “ \(\iff \) \(\gamma _j(\varvec{p})\!=\!\gamma _j(\varvec{q})\) (\(j\!=\!1,\dots ,n\))”.

Take \(\varvec{\nu }\in \gamma (\varvec{q})\), so that \(\varvec{\nu }=\varvec{\nu }_1+\cdots +\varvec{\nu }_n\) for \(\varvec{\nu }_j\in \gamma _j(\varvec{q})\). Since \(\gamma _j(\varvec{q})\subset \Delta (f^j)\), we have \(-d_j(\varvec{p})\le \langle \varvec{p},\varvec{\nu }_j\rangle \). If we assume \(\gamma (\varvec{q})\subset \gamma (\varvec{p})\), we then have

$$\begin{aligned} -\mathop {\mathrm {\sum }}_{j=1}^nd_j(\varvec{p})\le \mathop {\mathrm {\sum }}_{j=1}^n\langle \varvec{p},\varvec{\nu }_j\rangle =\langle \varvec{p},\varvec{\nu }\rangle =-\mathop {\mathrm {\sum }}_{j=1}^nd_j(\varvec{p}), \end{aligned}$$

and \(\langle \varvec{p},\varvec{\nu }_j\rangle =-d_j(\varvec{p})\), that is, \(\varvec{\nu }_j\in \gamma _j(\varvec{p})\). We conclude \(\gamma _j(\varvec{q})\subset \gamma _j(\varvec{p})\). By symmetry, we complete the proof of “\(\Longleftarrow \)”. \(\square \)

Compositing \(\varvec{f}\) with a translation of the target, the set \(S_{\varvec{f}}\) is changed by its translation. Without loss of generality, we thus can assume the following condition:

$$\begin{aligned} f^j (j=1,\dots ,n)\text { are non-constant polynomials with }\text { non-zero}\,\text { constant terms.}\nonumber \\ \end{aligned}$$
(1.3)

Throughout the paper, we assume the condition (1.3) unless otherwise stated.

The condition (1.3) implies that \(d_j(\varvec{p})\ge 0\) and equality holds if \(\varvec{p}\in (\mathbb {Z}_{\ge 0})^n\). For a face of \(\varvec{\Delta }(\varvec{f})\), we set . We remark that

(1.4)

Definition 1.2

We say a face of \(\varvec{\Delta }(\varvec{f})\) is non-coordinate if there is \(\varvec{p}\in \mathbb {Z}^m{\setminus }(\mathbb {Z}_{\ge 0})^m\), so that . Let \(\varvec{\Delta }_{\mathrm {nc}}(\varvec{f})\) denote the set of non-coordinate faces of \(\varvec{\Delta (f)}\).

For a polynomial map \(\varvec{g}=(g^1,\dots ,g^r):\mathbb {K}^m\rightarrow \mathbb {K}^r\), we set

$$\begin{aligned} Z(\varvec{g})&=\{\varvec{x}\in (\mathbb {K}^*)^m:g^j(\varvec{x})=0\ (j=1,\dots ,r)\}, \\ \Sigma (\varvec{g})&=\{\varvec{x}\in (\mathbb {K}^*)^m:\mathop {\mathrm {rank}}{\mathop {\mathrm {Jac}}{(}\varvec{g})(\varvec{x})}<r\}, \end{aligned}$$

where \(\mathop {\mathrm {Jac}}{(}\varvec{g})=(\partial _{x_i}g^j)_{i=1,\dots , m; j=1, \dots , r}\). Remark that the codimension of \(Z(\varvec{g}){\setminus }\Sigma (\varvec{g})\) is r.

Theorem 1.3

Assume that \(\varvec{f}\) is a polynomial map with (1.3) and

(1.5)

for any where . We have

where , , and is the map defined by \(\varvec{x}\mapsto (f^j_{\gamma _j}(\varvec{x}))_{j\not \in J}\).

We often say that has the dense nonsingular locus if the condition (1.5) holds.

When \(J=\{1,\dots ,n\}\), we have is a constant map, since \(\mathbb {K}^\emptyset \) is a one-point set.

Remark 1.4

Chen et al. [2] said that \(\varvec{f}\) is non-degenerate if for all . This implies (1.5) for all . However, our condition (1.5) is weaker than their non-degeneracy condition.

Remark 1.5

If , the condition (1.5) implies that is empty. In fact, if we take a nonsingular point , then the condition (1.5) implies that is of codimension n at \(\varvec{x}\). This implies that \(\varvec{x}\) is isolated in . However, this is impossible, since \(f^j_{\gamma _j}\) is weighted homogeneous with respect to the weight \(\varvec{p}\).

We also remark that when .

Corollary 1.6

A polynomial map \(\varvec{f}\) with (1.3) is proper, if for any none of \(\gamma _j\), \(j=1,\dots ,n\), contains the origin and has a dense nonsingular locus for any .

Remark 1.7

When \(k=\dim \gamma _J=\sum _{j\in J}\dim \gamma _j\), , is a system of polynomials of k Laurent monomials of \(\varvec{x}\) and is isomorphic to \(X\times (\mathbb {K}^*)^{n-k}\) for some algebraic variety X in \((\mathbb {K}^*)^k\). If , \(d_j=0\) and \(f^j(x)\) (\(j\in J\)) is invariant under the natural \(\mathbb {K}^*\)-action(s). Thus, . When is complete intersection, we have that

where F is a suitable fiber of . We thus have . When \(\mathbb {K}=\mathbb {C}\), \(S_{\varvec{f}}\) is a hypersurface and should be the union of the closures of with (and \(\dim F=0\)).

To prove Theorem 1.3, we actually show the following.

Theorem 1.8

If a polynomial map \(\varvec{f}:\mathbb {K}^m\rightarrow \mathbb {K}^n\) satisfies (1.3), then

(1.6)

where . Here, \({\overline{Z}}\) denotes the closure of a set Z.

Remark 1.9

Assume that \(m=n=2\). Take for a non-degenerate map \(\varvec{f}:\mathbb {K}^2\rightarrow \mathbb {K}^2\). We assume that , \(\varvec{p}=(p_1,p_2)\) with \(p_1<0\) and \(p_2>0\).

  • If \(0\in \gamma _1\) and \(0\in \gamma _2\), then \(f^1_{\gamma _1}\) and \(f^2_{\gamma _2}\) are polynomial of a monomial \(u=x_1^{q_1}x_2^{q_2}\). We denote them as \(g_1(u)\) and \(g_2(u)\). The defining equation of is the resultant of \(g_1-y_1\) and \(g_2-y_2\) where \((y_1,y_2)\) is a coordinate system of the target.

  • If \(0\not \in \gamma _1\) and \(0\in \gamma _2\), then we can write \(f^1_{\gamma _1}=x_1^pg_1(u)\) and \(f^2_{\gamma _2}=g_2(u)\) with \(u=x_1^{q_1}x_2^{q_2}\) similarly. The defining equation of is the resultant of \(g_1\) and \(g_2-y_2\).

2 Proof of Theorem 1.8

We are going to evaluate \(\varvec{f}(x)=(f^1(x),\dots ,f^n(x))\) along a curve \(\varvec{x}(t)\) defined by

$$\begin{aligned} \varvec{x}(t)&=(t^{p_1}v^1(t),\dots , t^{p_m}v^m(t))\quad \text {where}\quad \varvec{p}=(p_1,\dots ,p_m)\in \mathbb {Z}^m, \end{aligned}$$
(2.1)
$$\begin{aligned} \varvec{v}(t)&=(v^1(t),\dots ,v^m(t))=\sum \limits _{i=0}^{\infty } \varvec{v}_i t^i, \ \varvec{v}_i=(v^1_i,\dots ,v^m_i),\ \varvec{v}_0\in (\mathbb {K}^*)^m. \end{aligned}$$
(2.2)

We denote \({\mathcal {A}}(\varvec{p})\) the set of such arcs. It is clear that

$$\begin{aligned} \lim _{t\rightarrow 0}\varvec{x}(t)=\infty \iff \varvec{p}\not \in (\mathbb {Z}_{\ge 0})^m. \end{aligned}$$
(2.3)

We have an obvious decomposition \(S_{\varvec{f}}=\bigcup _{\varvec{p}}S_{\varvec{f}}(\varvec{p})\), where

$$\begin{aligned} S_{\varvec{f}}(\varvec{p})=\{\varvec{y}\in \mathbb {K}^n:\exists \varvec{x}(t)\in {\mathcal {A}}(\varvec{p}), \ \lim _{t\rightarrow 0}\varvec{x}(t)=\infty ,\ \lim _{t\rightarrow 0}\varvec{f}(\varvec{x}(t))=\varvec{y}\}. \end{aligned}$$
(2.4)

We have \(S_{\varvec{f}}(\varvec{p})=\emptyset \) if \(\varvec{p}\in (\mathbb {Z}_{\ge 0})^m\) by (2.3).

Remark 2.1

Observe that the arcs having several components being identically zero are not in \({\mathcal {A}}(\varvec{p})\). However, this does not affect to detect \(S_{\varvec{f}}\). Adding the terms \(t^l\), \(l\gg 1\), to such components does not affect the conditions for \(S_{\varvec{f}}\) and we can restrict our attention to \({\mathcal {A}}(\varvec{p})\).

Lemma 2.2

For \(\varvec{p}\not \in (\mathbb {Z}_{\ge 0})^m\), we have .

Proof

We express \(f^j(\varvec{x}(t))\) as

$$\begin{aligned} f^j(\varvec{x}(t))=t^{-d_j}({\hat{f}}^j_0+{\hat{f}}^j_1t+\cdots +{\hat{f}}^j_{d_j-1}t^{d_j-1}+{\hat{f}}^j_{d_j}t^{d_j}+o(t^{d_j})), \end{aligned}$$
(2.5)

where \(d_j=d_j(\varvec{p})\ge 0\). We have \({\hat{f}}^j_0=f^j_{\gamma _j}(\varvec{v}_0)\) where \(\gamma _j=\gamma _j(\varvec{p})\). Setting \(f^j(x)=\sum _{\varvec{\nu }}c^j_{\varvec{\nu }} \varvec{x}^{\varvec{\nu }}\), more precisely, we have

$$\begin{aligned} f^j(\varvec{x}(t)) =t^{-d_j(\varvec{p})}\mathop {\mathrm {\sum }}_{\varvec{\nu }} c^j_{\varvec{\nu }}\, t^{\langle \varvec{p},\varvec{\nu }\rangle +d_j(\varvec{p})}\varvec{v}(t)^{\varvec{\nu }}. \end{aligned}$$
(2.6)

If \(\varvec{y}\in S_{\varvec{f}}(\varvec{p})\), then there exists an arc \(\varvec{x}(t)\in {\mathcal {A}}(\varvec{p})\), so that

$$\begin{aligned} \lim _{t\rightarrow 0}\varvec{x}(t)=\infty ,\quad \text {and}\quad \lim _{t\rightarrow 0}\varvec{f}(\varvec{x}(t))=\varvec{y}. \end{aligned}$$

Using the notation in (2.5) and , we have

$$\begin{aligned} {\hat{f}}^j_0={\hat{f}}^j_1=\cdots ={\hat{f}}^j_{d_j-1}=0\quad (j\in J), \end{aligned}$$

and \(f^j_{\gamma _j(\varvec{p})}(\varvec{v}_0)=0\) (\(j\in J\)). This implies that \(J^c\) component of \(\varvec{y}\) is given by , and we complete the proof. \(\square \)

Remark 2.3

If \(\dim \gamma _j(\varvec{p})=0\) for some \(j\in J\), then \({\hat{f}}^j_0\ne 0\), and is empty.

Lemma 2.4

If , then

Proof

Take \(\varvec{p}\in \mathbb {Z}^n{\setminus }(\mathbb {Z}_{\ge })^n\) and consider a curve defined by (2.1). We compare (2.5) with (2.6) substituting by (2.2) and taking modulo \(t^{i+1}\). Remarking that the terms concerning \(\varvec{v}_i\) in \({\hat{f}}^j_i\) depend on the terms in \(f^j_{\gamma _j}\) only, we obtain that

$$\begin{aligned} {\hat{f}}^j_l=(df^j_{\gamma _j})_{\varvec{v}_0}(\varvec{v}_l)+r^j_{l}(\varvec{v}_0,\dots ,\varvec{v}_{l-1})\quad (l=1,2,\dots ), \end{aligned}$$
(2.7)

where \(r^j_l(\varvec{v}_0,\dots ,\varvec{v}_{l-1})\) is a suitable polynomial of \(\varvec{v}_0,\dots ,\varvec{v}_{l-1}\).

Take a point where . Let \((a^j_k)_{j\in J; k\ge 1}\) be any sequence. Suppose we have already taken \(\varvec{v}_0\), \(\varvec{v}_1\), ..., \(\varvec{v}_{l-1}\), so that

$$\begin{aligned} {\hat{f}}^j_k=a^j_k\quad (1\le k<l, j\in J). \end{aligned}$$

By (2.7), there exists \(\varvec{v}_l\), so that \({\hat{f}}^j_l=a^j_l\) for \(j\in J\), whenever \(\mathop {\mathrm {Jac}}{(}(f^j_{\gamma _j})_{j\in J})\) is of full rank at \(\varvec{v}_0\). Choose \((a^j_l)_{j\in J;l\ge 0}\), so that \(a^j_i=0\) (\(0\le i< d_j\)). Then, the corresponding curve \(\varvec{x}(t)\) has the following property:

$$\begin{aligned} \lim _{t\rightarrow 0}f^j(\varvec{x}(t))= {\left\{ \begin{array}{ll} f^j_{\gamma _j}(\varvec{v}_0)&{}(j\not \in J),\\ a^j_{d_j}&{}(j\in J). \end{array}\right. } \end{aligned}$$

Since one can choose \(a^j_{d_j}\) arbitrary, we conclude that . \(\square \)

In the situation above, we have

Corollary 2.5

for .

Proof

We obtain

since \(S_{\varvec{f}}\) is closed. \(\square \)

Remark 2.6

In the case that \(\varvec{f}\) does not satisfy (1.5), we would proceed further analysis using higher order differentials of composite maps. Actually, in the expression (2.5), we have

$$\begin{aligned} {\hat{f}}^j_l=\mathop {\mathrm {\sum }}_{k=0}^l\mathop {\mathrm {\sum }}_{i_1+2i_2+\cdots +ki_k=k} \tfrac{1}{i_1!\cdots i_k!} (d^{i_1+\cdots +i_k}f^j_{l-k})_{\varvec{v}_0}(\overbrace{\varvec{v}_1,\dots ,\varvec{v}_1}^{i_1},\dots ,\overbrace{\varvec{v}_k,\dots ,\varvec{v}_k}^{i_k}), \end{aligned}$$

where

$$\begin{aligned}&f^j(\varvec{x})=f^j_0(\varvec{x})+f^j_1(\varvec{x})+\cdots +f^j_{e_j}(\varvec{x})\text { with }\nonumber \\&f^j_k(t^{p_1}x_1,\dots ,t^{p_m}x_m)=t^{-d_j+k}f^j_k(\varvec{x}). \end{aligned}$$
(2.8)

Here, we use the notation in (2.1), (2.2), and \(d^kg\) denotes the symmetric multilinear form defined by kth-order differential of g. The first few of \({\hat{f}}^j_l\) are as follows:

$$\begin{aligned} {\hat{f}}^j_0&=f^j_0(\varvec{v}_0),\nonumber \\ {\hat{f}}^j_1&=f^j_1(\varvec{v}_0)+(df^j_0)_{\varvec{v}_0}(\varvec{v}_1),\nonumber \\ {\hat{f}}^j_2&=f^j_2(\varvec{v}_0)+(df^j_0)_{\varvec{v}_0}(\varvec{v}_2)+(df^j_1)_{\varvec{v}_0}(\varvec{v}_1)+\tfrac{1}{2}(d^2f^j_0)_{\varvec{v}_0}(\varvec{v}_1, \varvec{v}_1),\nonumber \\ {\hat{f}}^j_3&=f^j_3(\varvec{v}_0)+(df^j_0)_{\varvec{v}_0}(\varvec{v}_3)+(df^j_1)_{\varvec{v}_0}(\varvec{v}_2)+(df^j_2)_{\varvec{v}_0}(\varvec{v}_1) \end{aligned}$$
(2.9)
$$\begin{aligned}&+(d^2f^j_0)_{\varvec{v}_0}(\varvec{v}_1,\varvec{v}_2)+\tfrac{1}{2}(d^2f^j_1)_{\varvec{v}_0}(\varvec{v}_1,\varvec{v}_1)+\tfrac{1}{6}(d^3f^j_0)_{\varvec{v}_0}(\varvec{v}_1,\varvec{v}_1,\varvec{v}_1). \end{aligned}$$
(2.10)

The set \(S_{\varvec{f}}(\varvec{p})\) is described by eliminating \(\varvec{v}_0\), \(\varvec{v}_1\), \(\varvec{v}_2\), ... from the following system:

$$\begin{aligned} 0={\hat{f}}^j_l\ (l=0,1,2,\dots ,d_j-1), \quad y_j={\hat{f}}^j_{d_j}\quad (j=1,\dots ,n), \end{aligned}$$

where \((y_1,\dots ,y_n)\) denotes the coordinate system of the target.

3 Relative Version

The definition of non-properness set has an obvious generalization for a polynomial map \(\varvec{f}:X\rightarrow Y\) between algebraic varieties X and Y defined over \(\mathbb {K}\). We say \(\varvec{f}\) is not proper at \(\varvec{y}_0\in Y\) if there exist an arc \(\varvec{x}(t):\mathbb {K}^*,0\rightarrow X\), so that

$$\begin{aligned} \lim _{t\rightarrow 0}\varvec{x}(t)\ \text {does not exist, and } \ \lim _{t\rightarrow 0}\varvec{f}(\varvec{x}(t))=\varvec{y}_0. \end{aligned}$$

We denote by \(S_{\varvec{f}}\) the set of non-proper points of \(\varvec{f}:X\rightarrow Y\).

Let \(\varvec{f}=(f^1,\dots ,f^n):\mathbb {K}^m\rightarrow \mathbb {K}^n\) be a polynomial map with (1.3). Set \(\varvec{f}'=(f^1,\dots ,f^{n-k})\) and \(\varvec{f}''=(f^{n-k+1},\dots ,f^n)\). Set \(\varvec{y}=(\varvec{y}',\varvec{y}'')\) and \(\varvec{y}_0=(\varvec{y}'_0,\varvec{y}''_0)\). In this section, we describe a generalization of the discussion above to the map

$$\begin{aligned} \varvec{f}'|_X:X\rightarrow \mathbb {K}^{n-k}\quad \text {where}\ X=(\varvec{f}'')^{-1}(\varvec{y}_0''). \end{aligned}$$

Since \(\varvec{f}|_X=(\varvec{f}'|_X,\varvec{y}''_0)\), we identify \(\varvec{f}|_X\) with the map \(\varvec{f}'|_X\) via the embedding \(\mathbb {K}^{n-k}\times \{\varvec{y}''_0\}\subset \mathbb {K}^n\). This means that we identify \(\mathbb {K}^{n-k}\) with \(\mathbb {K}^{n-k}\times \{\varvec{y}''_0\}\), and we can identify \(\varvec{f}^{\{1,\dots ,n-k\}{\setminus } J}\) with \(\varvec{f}^{\{1,\dots ,n\}{\setminus } J}\). We call this map by \(\varvec{f}^{J^c}\). For a face of \(\varvec{\Delta }(\varvec{f})\), we define and . In the same way, we can identify with on the set . So denote its image by as . Set

and .

Under the notation and assumption above, we have the following:

Theorem 3.1

We assume that the nonsingular locus of X is dense in X and X has no component in \(\{x_1\cdots x_n=0\}\). Then

(3.1)

If has dense nonsingular loci for , we have equalities in (3.1).

The assumption that X has no component in \(\{x_1\cdots x_n=0\}\) comes from Remark 2.1. If there is an arc \(\varvec{x}(t)\) in \(X\cap \mathbb {K}^I\), \(I\subsetneq \{1,\dots ,n\}\), with \(\varvec{x}(t)\rightarrow \infty \), and \(\varvec{f}(\varvec{x}(t))\rightarrow \varvec{y}_0\) (\(t\rightarrow 0\)), one can choose \(\hat{\varvec{x}}(t)\in {\mathcal {A}}(\varvec{p})\) for some \(\varvec{p}\) with \(\hat{\varvec{x}}(t)\rightarrow \infty \), and \(\varvec{f}(\hat{\varvec{x}}(t))\rightarrow \varvec{y}_0\) \((t\rightarrow 0)\). However, we do not know that \(\hat{\varvec{x}}(t)\) can be chosen in X in such a case.

Proof of Theorem 3.1

First, for \(\varvec{x}(t)\in {\mathcal {A}}(\varvec{p})\), we can write

$$\begin{aligned} f^j(\varvec{x}(t))&=t^{-d_j}({\hat{f}}^j_0+{\hat{f}}^j_1t+\cdots +{\hat{f}}^j_{d_j-1}t^{d_j-1}\\ {}&\quad +{\hat{f}}^j_{d_j}t^{d_j}+o(t^{d_j})) \quad (j=1,\dots ,n-k),\\ f^j(\varvec{x}(t))-y^j_0&=t^{-d_j}({\hat{f}}^j_0+{\hat{f}}^j_1t+\cdots +{\hat{f}}^j_{d_j-1}t^{d_j-1}\\ {}&\quad +{\hat{f}}^j_{d_j}t^{d_j}+o(t^{d_j})) \quad (j=n-k+1,\dots ,n), \end{aligned}$$

where \(d_j=d_j(\varvec{p})\). We remark that \(\varvec{y}\in S_{\varvec{f}|_X}\) if and only if there is an arc \(\varvec{x}(t):\mathbb {K}^*,0\rightarrow X\), so that \(\displaystyle {\lim \nolimits _{t\rightarrow 0}\varvec{x}(t)}=\infty \), and that \(\displaystyle {\lim \nolimits _{t\rightarrow 0}\varvec{f}(\varvec{x}(t))}=\varvec{y}\). In a similar way to the proof of Lemma 2.2, we have

This implies that \(f^j_{\gamma _j(\varvec{p})}(\varvec{v}_0)=0\) for , and \((f^j-y^j_0)_{\gamma _j(\varvec{p})}(\varvec{v}_0)=0\) for \(j=n-k+1,\dots ,n\), which show the second inclusion.

By the discussion similar to the proof of Lemma 2.4, for any \(a^j\) (\(j\in J\)), we can construct a formal power series \(\varvec{v}(t)=(v^1(t),\dots ,v^n(t))\), such that

$$\begin{aligned} f^j(t^{p_1}v^1(t),\dots ,t^{p_n}v^n(t))&= a^j+o(t)\quad (j\in J), \end{aligned}$$
(3.2)
$$\begin{aligned} f^j(t^{p_1}v^1(t),\dots ,t^{p_n}v^n(t))&= y^j_0\quad (j=n-k+1,\dots ,n), \end{aligned}$$
(3.3)

where \(\varvec{y}_0=(y_0^1,\dots ,y_0^n)\). Remark that we can reduce this system to polynomials by multiplying some power \(t^l\). By the approximation theorem of Artin ( [1]), we can take a convergent power series \(\varvec{v}(t)=(v^1(t),\dots ,v^n(t))\) which satisfies (3.2) and (3.3). This completes the proof of the first inclusion. \(\square \)

If X has a component \(X_1\) in \(\{x_1\cdots x_n=0\}\), we could proceed a similar computation for \(\varvec{f}|_{X_1}\) which is a polynomial map with less number of variables and obtain that \(S_{\varvec{f}|_{X_1}}\subset S_{\varvec{f}|_X}\).

4 Examples

Example 4.1

Let us start with the simplest example \(\mathbb {K}^2\rightarrow \mathbb {K}^2\), \(f(x,y)=(x,xy)\). For the assumption (1.3) we consider \(\varvec{f}(x,y)=(c_1+x,c_2+xy)\) where \(c_1\), \(c_2\) are non-zero constants. It suffices to consider only 3 faces below thanks to Remark 2.3. Since

figure a

we have \(S_{\varvec{f}}=\{(c_1,c_2+xy):(x,y)\in (\mathbb {K}^*)^2\}=\{c_1\}\times \mathbb {K}\).

Example 4.2

Consider the map \(\varvec{f}(x,y)=(x^2y^2+xy+y+1,x^2y+y+x+1)\). Since

figure b

we have

$$\begin{aligned} S_{\varvec{f}}\!=\!\{x^2y^2+xy+1:xy+1=0\}\times \mathbb {K} \!=\!\{t^2+t+1:t+1=0\}\times \mathbb {K} \!=\!\{1\}\!\times \!\mathbb {K}. \end{aligned}$$

Example 4.3

Consider the map \(\varvec{f}(x,y)=(xy+y+1,x^2y^2+y^2+xy+1)\), we have

figure c

Therefore, we have

$$\begin{aligned} S_{\varvec{f}}&=\{(X,Y):\exists (x,y)\, \in (\mathbb {K}^*)^2 \ \text {s.t.}\ (X,Y)=(xy+1,x^2y^2+xy+1)\}\\&=\{(X,Y):\exists t \, \in \mathbb {K}^* \ \text {s.t.}\ (X,Y)=(t+1,t^2+t+1)\}\\&=\{Y-X^2+X-1=0\}. \end{aligned}$$

Example 4.4

Consider the map \(\varvec{f}:\mathbb {K}^3\rightarrow \mathbb {K}^3\) defined by

$$\begin{aligned} \varvec{f}(x,y,z)\!=\! (1+xy+xz, 1+axz+x(1-xy+xz), 1+bxy+x(1+xy+xz)), \end{aligned}$$

\(a\ne 0\), \(b\ne 0\). The Newton polyhedra look like

figure d

and we obtain the following data.

\(\varvec{p}\)

\((d_1,d_2,d_3)\)

\((1,-1,-1)\)

\((1+xy+xz,1+axz,1+bxy)\)

(0, 0, 0)

\(\emptyset \)

\((\mathbb {K}^*)^3\)

\((1,-1,-2)\)

\((xz,axz,1+bxy+x^2z)\)

(1, 1, 0)

\(\{1,2\}\)

\(\emptyset \)

\((1,-2,-1)\)

\((xy,1-x^2y+axz,bxy)\)

(1, 0, 1)

\(\{1,3\}\)

\(\emptyset \)

\((0,-1,-1)\)

\((x(y+z),x(xz-xy+az),x(xz+xy+by))\)

(1, 1, 1)

\(\{1,2,3\}\)

\(\emptyset \)

\((-1,1,1)\)

\((1+xy+xz,x(1-xy+xz),x(1+xy+xz))\)

(0, 1, 1)

\(\{2,3\}\)

 

We have

We conclude that .

5 Degenerate Case

We present several tricks to handle the case when (1.5) does not hold for some .

5.1 The First Trick

Let \(\varvec{h}:\mathbb {K}^{m+k}\rightarrow \mathbb {K}^{n+k}\) be a polynomial map with (1.5). We assume that \(h^{n+i}(x)=\varphi _1(x_1,\dots ,x_m)-x_{m+i}\) for \(i=1,\dots ,k\). Let X be a subset of \(\mathbb {K}^{m+k}\) defined by

$$\begin{aligned} x_{m+i}=\varphi _i(x_1,\dots ,x_m),\quad i=1,\dots ,k. \end{aligned}$$

The set X is isomorphic to \(\mathbb {K}^{m}\) by the map defined by

$$\begin{aligned} (x_1,\dots ,x_m)\mapsto (x_1,\dots ,x_m,\varphi _1(x_1,\dots ,x_m),\dots ,\varphi _k(x_1,\dots ,x_m)). \end{aligned}$$

If \(\varvec{f}(x_1,\dots ,x_m)=\varvec{h}(x_1,\dots ,x_m,\varphi _1(x_1,\dots ,x_m),\dots ,\varphi _k(x_1,\dots ,x_m))\), then we have

$$\begin{aligned} S_{\varvec{f}}=S_{\varvec{h}|_X} \end{aligned}$$

via the identification of \(\mathbb {K}^n\) with \(\mathbb {K}^n\times \{0\}\). When \(\varvec{h}\) satisfies the required assumptions, one can use Theorem 3.1 to describe \(S_{\varvec{f}}\), even though \(\varvec{f}\) does not satisfy (1.5) for some .

Example 5.1

Let \(\varvec{h}:\mathbb {K}^3\rightarrow \mathbb {K}^3\) be the map defined by

$$\begin{aligned} \varvec{h}(x,y,z)=(1+x+z^2,1+x^2+z^3,y^2-x^3-z). \end{aligned}$$

Let X be the subset of \(\mathbb {K}^3\) defined by \(z=y^2-x^3\). Setting \(\varvec{f}(x,y)=\varvec{h}(x,y,y^2-x^3)\), we have

$$\begin{aligned} \varvec{f}(x,y)=(1+x+(y^2-x^3)^2,1+x^2+(y^2-x^3)^3). \end{aligned}$$

Applying Theorem 3.1, we conclude that \(\varvec{h}\) is proper, and thus so is \(\varvec{f}\).

5.2 The Second Trick

We show another trick, which we do not use higher dimension. If , , is not empty for some , we may have a chance to change (resp. ) in (1.6) by a smaller subset of (resp. by a supset of ).

Let \(\varvec{f}:\mathbb {K}^m\rightarrow \mathbb {K}^n\) be a polynomial map with (1.3). Set \(\varvec{f}^J_l=(f^j_l)_{j\in J}\) for \(J\subset \{1,\dots ,n\}\) where \(f^j_k\) is defined in (2.8). Remark that \(f^j_0(x)=f^j_{\gamma _j}(x)\). We set

where , \(\varvec{y}^{J'}=(y^{j'})_{j'\in J'}\),

$$\begin{aligned} J'=J'(\varvec{p})&=\{j\in \{1,\dots ,n\}:d_j(\varvec{p})=1\},\ \text { and }\\ J''=J''(\varvec{p})&=\{j\in \{1,\dots ,n\}:d_j(\varvec{p})\ge 2\}. \end{aligned}$$

Remark that \(J=J'\cup J''\) because of (1.4). Under the notations and the assumptions above, we have

Theorem 5.2

If , \(\varvec{p}\in \mathbb {Z}^n{\setminus }(\mathbb {Z}_\ge )^n\), is not empty for , then

Moreover, we conclude that \(W'(\varvec{p})\subset S_{\varvec{f}}(\varvec{p})\), where

Proof

If \(\varvec{y}\in S_{\varvec{f}}(\varvec{p})\), \(\varvec{p}\in \mathbb {Z}^n{\setminus }(\mathbb {Z}_\ge )^n\), there exists \(\varvec{x}(t)\in {\mathcal {A}}(\varvec{p})\) with \(\varvec{f}(\varvec{x}(t))\rightarrow \varvec{y}\) (\(t\rightarrow 0\)). By (2.9) and (2.10), we have

$$\begin{aligned} 0&=f^j_0(\varvec{v}_0) \quad (j\in J))\\ y^{j'}&=f^{j'}_1(\varvec{v}_0)+(df^{j'})_{\varvec{v}_0}(\varvec{v}_1)\quad (j'\in J')\\ 0&=f^{j''}_1(\varvec{v}_0)+(df^{j''})_{\varvec{v}_0}(\varvec{v}_1)\quad (j''\in J''). \end{aligned}$$

Here, we use the expression in (2.1) and (2.2). This implies that

$$\begin{aligned} \mathop {\mathrm {rank}}{\begin{pmatrix} \partial _{x_i}\varvec{f}^{J'}_0(\varvec{x})\\ \partial _{x_i}\varvec{f}^{J''}_0(\varvec{x}) \end{pmatrix}} = \mathop {\mathrm {rank}}{\begin{pmatrix} \partial _{x_i}\varvec{f}^{J'}_0(\varvec{x})&{}\qquad \varvec{f}^{J'}_1(\varvec{x})-\varvec{y}^{J'} \\ \partial _{x_i}\varvec{f}^{J''}_0(\varvec{x})&{}\qquad \varvec{f}^{J''}_1(\varvec{x}) \end{pmatrix}}, \end{aligned}$$

and we conclude .

Now, we assume \(\varvec{y}\in W'(\varvec{p})\). There exists , such that

$$\begin{aligned} \mathop {\mathrm {rank}}{(}\partial _{x_i}\varvec{f}_0^{J''}(\varvec{x}))_{i=1,\dots ,m}=\#J''. \end{aligned}$$
(5.1)

By the discussion in the second paragraph of the proof of Lemma 2.4, we can choose \(\varvec{x}(t)\) to attain arbitrary \({\hat{f}}^{j''}_l\) (\(j''\in J''\), \(l\ge 1\)) whenever \(\varvec{x}\not \in \Sigma (\varvec{f}^{J''})\). This implies that \(W'(\varvec{p})\subset S_{\varvec{f}}(\varvec{p})\). \(\square \)

We present a trick to describe where \(S_{\varvec{f}}(\varvec{p})\) is the set defined by (2.4).

Assume that \(\varvec{f}\) does not satisfy (1.5) for some face . We take a primitive \(\varvec{p}\in \mathbb {Z}^n{\setminus }(\mathbb {Z}_\ge )^n\), so that . Here, \(\varvec{p}\) is primitive means that the greatest common divisor of all components of \(\varvec{p}\) is 1. Assume that there exists a rational map \(\mathbb {K}^m\times \mathbb {K}^n\rightarrow \mathbb {K}^n\), \((\varvec{x},\varvec{z})\mapsto \Psi (\varvec{x},\varvec{z})\) with the following properties.

  • There exist a certain rational map \(\varvec{g}:\mathbb {K}^{m}\rightarrow \mathbb {K}^n\), possibly with points of indeterminacy, so that \(\varvec{f}(\varvec{x})=\Psi (\varvec{x},\varvec{g}(\varvec{x}))\), and \(\varvec{g}\) satisfies (1.5) for the face supported by \(\varvec{p}\).

  • The limit \(\displaystyle {\lim _{t\rightarrow 0}\Psi (\varvec{x}(t),\varvec{z})}\) exists for \(\varvec{x}(t)\in {\mathcal {A}}(\varvec{p})\). We assume that this limit depends on \(\varvec{v}_0\), and denote the limit by \(\Psi _{\varvec{v}_0}(\varvec{z})\), under the notation in (2.1) and(2.2),

  • The limit \(\displaystyle {\lim _{t\rightarrow 0}\varvec{g}(\varvec{x}(t))}\) for \(\varvec{x}(t)\in {\mathcal {A}}(\varvec{p})\) exists.

Theorem 5.3

Under the notations and assumptions above, the set \(S_{\varvec{f}}(\varvec{p})\), , is in the image of the following map:

Proof

For \(\varvec{p}\in \mathbb {Z}^n{\setminus }(\mathbb {Z}_\ge )^n\)

\(\square \)

Since , this may describe , as we see in the following example.

Example 5.4

Consider the map \(\varvec{f}:\mathbb {K}^3\rightarrow \mathbb {K}^3\) defined by

$$\begin{aligned} \varvec{f}(x_1,x_2,x_3)=(1+x_1x_3+x_2x_3,1+x_1(1-x_1x_3+x_2x_3),1+x_2(1-x_1x_3+x_2x_3)). \end{aligned}$$

The map \(\varvec{f}\) satisfies the condition (1.5) except the face , as we see in the following data.

\(\varvec{p}\)

\((d_1,d_2,d_3)\)

\((1,1,-1)\)

\((1+x_1x_3+x_2x_3,1,1)\)

(0, 0, 0)

\(\emptyset \)

\((1,1,-2)\)

\((x_3(x_1+x_2),1+x_1x_3(x_2-x_1),1+x_2x_3(x_2-x_1))\)

(1, 0, 0)

\(\{1\}\)

\((-1,0,1)\)

\((1+x_1x_3,x_1(1-x_1x_3),1+x_2-x_1x_2x_3)\)

(0, 1, 0)

\(\{2\}\)

\((0,-1,1)\)

\((1+x_2x_3,1+x_1+x_1x_2x_3,x_2(1+x_2x_3))\)

(0, 0, 1)

\(\{3\}\)

\((-1,-1,1)\)

\((1+x_1x_3+x_2x_3,x_1(1-x_1x_3+x_2x_3),x_2(1-x_1x_3+x_2x_3))\)

(0, 1, 1)

\(\{2,3\}\)

We easily see that

We also have that

$$\begin{aligned} W(-1,-1,1)&= \Biggl \{ \begin{matrix} (y_1,y_2,y_3) : \exists (x_1,x_2,x_3) \ 1-x_1x_3+x_2x_3=0, y_1=1+x_1x_3+x_2x_3, \\ \mathop {\mathrm {rank}}{ \begin{pmatrix} 1-2x_1x_3+x_2x_3&{}x_1x_3&{}x_1(x_2-x_1)&{}1-y_2\\ x_2x_3&{}1-x_1x_3+2x_2x_3&{}x_2(x_2-x_1)&{}1-y_3 \end{pmatrix}}=1 \end{matrix} \Biggr \}\\&=\{y_1(y_2-y_3)-2y_2+2=0\}. \end{aligned}$$

We will show that this coincides with , considering the rational map

$$\begin{aligned} \Phi :\mathbb {K}^3\times \mathbb {K}^3\rightarrow \mathbb {K}^3, \ (\varvec{x},\varvec{y})\mapsto \varvec{z} =(z_1,z_2,z_3)=\Bigl (y_1,y_2,-\frac{x_2}{x_1}y_2+y_3\Bigr ). \end{aligned}$$

Remark that \(\varvec{g}(\varvec{x})=\Phi (\varvec{x},\varvec{f}(\varvec{x}))\) defines the map

$$\begin{aligned} \mathbb {K}^*\!\times \!\mathbb {K}^2\!\rightarrow \!\mathbb {K}^3, \ (x_1,x_2,x_3)\!\mapsto \! (1+x_1x_3+x_2x_3, 1+x_1(1-x_1x_3+x_2x_3), 1\!-\!\tfrac{x_2}{x_1}), \end{aligned}$$

and obtain the following data:

\(\varvec{p}\)

\((d_1,d_2,d_3)\)

\((-1,-1,1)\)

\((1+x_1x_2+x_1x_3,x_1(1-x_1x_2+x_2x_3),1-\frac{x_2}{x_1})\)

(0, 1, 0)

\(\{2\}\)

The Newton polyhedra look like

figure e

As in the proof of Theorem 1.8, we conclude that

(5.2)

For \((x_1,x_2,x_3)\) in (5.2), we have

$$\begin{aligned} -\frac{x_2}{x_1}=\Bigl (1-\frac{x_2}{x_1}\Bigr )-1=z_3-1=\frac{2}{z_1}-1=\frac{2}{y_1}-1.\ \end{aligned}$$

Setting

$$\begin{aligned} \Psi :\mathbb {K}^3\times \mathbb {K}^3\rightarrow \mathbb {K}^3, \ (\varvec{x},\varvec{y})\mapsto \varvec{z}=\Bigl (y_1,y_2,\frac{x_2}{x_1}y_2+y_3\Bigr ), \end{aligned}$$

we have \(\varvec{y}=\Psi (\varvec{x},\Phi (\varvec{x},\varvec{y}))\), and thus, \(\varvec{f}(\varvec{x})=\Psi (\varvec{x},\varvec{g}(\varvec{x}))\). The set

and we obtain .

We thus obtain that \(S_{\varvec{f}}=\{y_1+y_3=2\}\cup \{y_1y_2-y_1y_3-2y_2+2=0\}\).

Example 5.5

Let us use the first trick to handle Example 5.4. We consider the map \(\varvec{h}:\mathbb {K}^4\rightarrow \mathbb {K}^4\) defined by

$$\begin{aligned} \varvec{h}(x_1,x_2,x_3,x_4)=(1+x_1x_3+x_2x_3, 1+x_1x_4, 1+x_2x_4, 1-x_1x_3+x_2x_3-x_4), \end{aligned}$$

since \(\varvec{f}(x_1,x_2,x_3)=\varvec{h}(x_1,x_2,x_3,1-x_1x_3+x_2x_3)\). We analyze \(\varvec{h}(\varvec{x}(t))\) for \(\varvec{x}(t)\in {\mathcal {A}}(-1,-1,1,1)\), because \(\varvec{p}=(-1,-1,1,k)\), \(k\ge 1\), supports a three-dimensional face of \(\varvec{\Delta }(\varvec{g})\) if and only if \(k=1\). Setting

$$\begin{aligned} \varvec{x}(t)=( t^{-1}(x^1_0+x^1_1t+\cdots ), t^{-1}(x^2_0+x^1_1t+\cdots ), t(x^3_0+x^3_1t+\cdots ), t(x^4_0+x^4_1t+\cdots )), \end{aligned}$$

we have

$$\begin{aligned} \varvec{h}(\varvec{x}(t))=(1+x^1_0x^3_0+x^2_0x^3_0, 1+x^1_0x^4_0,1+x^2_0x^4_0, 1-x^1_0x^3_0-x^2_0x^3_0-x_0^4)+o(t). \end{aligned}$$

Assuming \(\varvec{x}(t)\) is in \(X=\{\varvec{x}\in \mathbb {K}^4:1-x_1x_3+x_2x_3=x_4\}\), we obtain that \(1-x^1_0x^3_0-x^2_0x^3_0=x_0^4\). Under this condition, we eliminate \(x^1_0\), \(x^2_0\), \(x^3_0\) from the system

$$\begin{aligned} (1+x^1_0x^3_0+x^2_0x^3_0, 1+x^1_0x^4_0,1+x^2_0x^4_0, 1-x^1_0x^3_0-x^2_0x^3_0)=(y_1,y_2,y_3,0), \end{aligned}$$

we conclude that . We thus obtain that \(S_{\varvec{f}}=\{y_1+y_3=2\}\cup \{y_1y_2-y_1y_3-2y_2+2=0\}\).