FormalPara Rosuvastatin/Ezetimibe: clinical considerations in hypercholesterolemia

Combines two lipid-lowering agents with complementary mechanisms of actions

FDCs bioequivalent to rosuvastatin/ezetimibe co-administered as separate agents

Significantly more effective than rosuvastatin monotherapy or simvastatin/ezetimibe in reducing LDL-C and total cholesterol

Generally well tolerated

1 Introduction

Cardiovascular disease (CVD) is responsible for > 4 million deaths annually in Europe alone, hereby representing the leading cause of mortality in this region [1]. Elevated low-density lipoprotein cholesterol (LDL-C) has long been regarded as an important modifiable risk factor for cardiovascular events and the treatment of hypercholesterolemia remains a key focus in primary and secondary atherosclerotic CVD prevention [2, 3]. In both the primary and secondary prevention settings, reductions in LDL-C have been demonstrated to result in continuous, graded reductions in the risk of cardiovascular events and mortality [3].

Alongside healthy lifestyle interventions, HMG-CoA reductase inhibitors (statins) are the cornerstone of therapy for hypercholesterolemia [2]. Statins substantially reduce cardiovascular-related morbidity and mortality [3, 4] and are generally well tolerated [5], albeit associated with rare dose-dependent adverse effects that include rhabdomyolysis (≈ 1 case per 10,000 patient-years of statin exposure [6]) [6, 7] and the development of type 2 diabetes (excess risk 1–6 cases per 1000 patient-years, varying based on age and gender [8]) [8, 9]. In clinical practice, however, a sizeable proportion of statin-treated patients (≈ 50%) do not attain desirable LDL-C levels [10]; indeed, ≈ 40% of patients do not achieve an LDL-C target of < 70 mg/dL (a recommended treatment goal in patients at high cardiovascular risk [5]) even when statins are administered at high doses in clinical trials [11]. Furthermore, some patients are unable to tolerate high-dose statins or are particularly susceptible to statin–induced myopathy (e.g. elderly patients, Asian patients or patients with renal impairment) [12, 13].

In many patients, combining lipid-lowering compounds with complementary mechanisms of action may be necessary in order for target LDL-C levels to be achieved [4, 12]. Ezetimibe is an inhibitor of intestinal cholesterol absorption that has been established to be an effective and generally well tolerated option in the management of hypercholesterolemia [14, 15]. Unlike the statins, ezetimibe does not appear to increase the incidence of new-onset diabetes mellitus [9] and may even confer benefits for glycaemic control [16]. Adding ezetimibe to a statin (e.g. simvastatin, atorvastatin) has been shown to enable higher proportions of patients to attain guideline-recommended cholesterol levels and allows for the use of lower statin dosages, which may be of particular benefit in patients prone to the dose-dependent adverse effects of statins [12, 17]. Importantly, there is emerging evidence of statin/ezetimibe combinations such as simvastatin/ezetimibe reducing the risk of major atherosclerotic events by a magnitude consistent with that observed with statins for the same degree of absolute LDL-C lowering [12, 18].

Rosuvastatin, whilst having a comparable tolerability profile to other available statins, is significantly more effective than other statins (including atorvastatin and simvastatin) in reducing LDL-C and thus constitutes an important lipid-lowering option [19,20,21]. The fixed dose combination (FDC) of rosuvastatin/ezetimibe is indicated as an adjunctive therapy to diet for the management of primary hypercholesterolemia in numerous countries worldwide. This review discusses the clinical efficacy and tolerability of rosuvastatin/ezetimibe in the management of hypercholesterolemia, focussing on the 5 mg/10 mg, 10 mg/10 mg and 20 mg/10 mg formulations. The pharmacological properties of rosuvastatin/ezetimibe are also summarized.

2 Pharmacological Properties of Rosuvastatin/Ezetimibe

The pharmacological properties of rosuvastatin [19,20,21] and ezetimibe [14, 22] (Table 1) have been extensively reviewed previously. As rosuvastatin and ezetimibe have complementary mechanisms of action, co-administering these agents may result in additive therapeutic effects [23]. In healthy hypercholesterolemic patients randomized to receive rosuvastatin 10 mg plus ezetimibe 10 mg (n = 12), rosuvastatin 10 mg plus placebo (n = 12), ezetimibe 10 mg plus placebo (n = 8) or two placebo tablets (n = 8) daily for 2 weeks, the co-administration of rosuvastatin and ezetimibe produced significantly (p < 0.01) greater reductions in LDL-C and total cholesterol than placebo or either drug administered alone; while rosuvastatin and ezetimibe alone reduced LDL-C by 45% and 17%, respectively, rosuvastatin plus ezetimibe reduced LDL-C by 61% [24]. Neither high-density lipoprotein cholesterol (HDL-C) nor triglycerides were significantly impacted by rosuvastatin and/or ezetimibe [24]. Similarly, in healthy males of Asian ethnicity co-administered rosuvastatin 20 mg and ezetimibe 10 mg (n = 25), lipid-lowering effects were the approximate summation of the effects of the monotherapies; LDL-C and TC (but not HDL-C) were effectively reduced [25]. A population pharmacodynamic model based on LDL-C levels in patients receiving statins (n = 378) lends additional support to benefits of combining rosuvastatin and ezetimibe, with a simulation indicating that the co-administration of rosuvastatin (low dose) and ezetimibe improves clinical responses relative to higher-dose rosuvastatin monotherapy [26].

Table 1 Pharmacological properties of rosuvastatin and ezetimibe

Rosuvastatin combined with ezetimibe may be more effective in reducing coronary plaques than the same dose of rosuvastatin administered alone [27, 28]. Rosuvastatin 5 mg plus ezetimibe 10 mg (n = 21) and rosuvastatin 5 mg monotherapy (n = 19) were associated with 13.2% and 3.1% reductions, respectively, in plaque volume from baseline to month 6 (primary endpoint; p = 0.050 for treatment group difference) when administered once daily in a randomized, open-label study in Japanese patients with stable coronary artery disease evaluated using intravascular ultrasound [27]. Percent change in plaque volume was significantly correlated with percent change in LDL-C (r = 0.384; p = 0.015) [27]. After 12 months of randomized treatment in a Chinese study, patients with coronary atherosclerotic heart disease and hyperlipidemia receiving rosuvastatin 10 mg plus ezetimibe 10 mg once daily (n = 55) had significantly (p < 0.05) greater reductions in plaque burden, plaque cross-sectional area and percent necrotic plaque composition than those receiving rosuvastatin 10 mg once daily as monotherapy (n = 51) [28].

Co-administration of rosuvastatin and ezetimibe does not appear to produce any clinically significant pharmacokinetic interactions in healthy adults [25, 29]. In hypercholesterolemic patients, the co-administration of rosuvastatin 10 mg and ezetimibe 10 mg increased rosuvastatin exposure [area under the concentration–time curve (AUC)] 1.2-fold relative to rosuvastatin monotherapy [30]. Several pharmacokinetic studies have demonstrated the bioequivalence of rosuvastatin/ezetimibe FDCs to the co-administration of commercially available individual tablets of rosuvastatin and ezetimibe, based on exposure [peak plasma concentration and AUC] of rosuvastatin, ezetimibe and total ezetimibe (ezetimibe plus ezetimibe glucuronide) [31,32,33,34,35].

While ezetimibe generally has a low propensity to interact with other drugs commonly used in patients with hypercholesterolemia [22], certain drugs are known to increase rosuvastatin exposure (e.g. ciclosporin, protease inhibitors) [20]. Rosuvastatin and/or ezetimibe exposure are likewise increased in specific patient populations (e.g. hepatic impairment; Table 1) [20, 22]. Consequently, rosuvastatin/ezetimibe may not be appropriate for use in certain patients; consult local prescribing information for further guidance.

3 Therapeutic Efficacy of Rosuvastatin/Ezetimibe

Several well-designed clinical studies have demonstrated that oral rosuvastatin and oral ezetimibe each have substantial benefits for lipid profiles in adults with primary hypercholesterolemia (reviewed previously, e.g. [14, 19, 21]). This section discusses the therapeutic efficacy of rosuvastatin and ezetimibe combination therapy (hereafter referred to as rosuvastatin/ezetimibe) either administered as separate agents [36,37,38] or as a FDC [39,40,41] at doses of rosuvastatin 5–20 mg/ezetimibe 10 mg in large (n > 200), well-designed clinical trials in adults with hypercholesterolemia. These include randomized, double-blind, multinational (ACTE) and Korean multicentre (SP-RE-003, ROSE, MRS-ROZE and I-ROSETTE; Fig. 1) phase III trials comparing rosuvastatin/ezetimibe with rosuvastatin monotherapy [37,38,39,40,41] and a randomized, open-label, multinational phase IIIb trial (GRAVITY) comparing rosuvastatin/ezetimibe with simvastatin/ezetimibe [36]. In all studies, enrolled patients had hypercholesterolemia requiring lipid-lowering treatment in order to achieve National Cholesterol Education Program Adults Treatment Panel III (NCEP ATP III) recommended levels [36,37,38,39,40,41]. Additional eligibility criteria for enrolment in ACTE [37] and ROSE [41] included being at high or moderately high risk of coronary heart disease (CHD), while GRAVITY [36] only enrolled patients with a history of CHD or a CHD risk equivalent, clinical evidence of atherosclerosis or a 10-year Framingham CHD risk score of > 20%, and a fasting LDL-C level of 130 to < 220 mg/dL. Common main exclusion criteria included uncontrolled diabetes mellitus (or glycosylated hemoglobin > 9%) [38, 39, 41], uncontrolled hypertension [37,38,39, 41] and a history of certain cardiovascular diseases [36,37,38,39,40,41].

Fig. 1
figure 1

Design of the ROSE [41], MRS-ROZE [40] and I-ROSETTE [39] trials evaluating rosuvastatin/ezetimibe FDCs. Changes from baseline in LDL-C are reported in the animated figure (available online). EZE ezetimibe, FDC fixed-dose combination, LDL-C low-density lipoprotein cholesterol, RSV rosuvastatin. *p < 0.05 vs equivalent RSV monotherapy dose

Supplementary file1 (MP4 17521 kb)

In all trials, assigned treatments were administered once daily [36,37,38,39,40,41]. The trials included a ≥ 4-week run-in period during which patients were instructed or recommended to make therapeutic lifestyle modifications [36,37,38,39,40,41]; in ACTE [37], patients also received open-label rosuvastatin 5 mg or 10 mg during this time. The run-in period was followed by a randomized treatment period, during which patients in ACTE [37] received either ezetimibe 10 mg as an add-on to their rosuvastatin dose or an up-titration of rosuvastatin (rosuvastatin dose increased from 5 and 10 mg to 10 mg and 20 mg, respectively) for 6 weeks and patients in the Korean trials [38,39,40,41] received rosuvastatin 5 mg, 10 mg or 20 mg with or without ezetimibe 10 mg for 8 weeks (with randomization stratified by NCEP ATP III risk group in SP-RE-003 [38] and I-ROSETTE [39]). Patients enrolled in GRAVITY received 6 weeks of randomized monotherapy with rosuvastatin (10 mg or 20 mg) or simvastatin (40 mg or 80 mg) before entering a 6-week combination therapy period in which ezetimibe 10 mg was added to their assigned statin dose [36]. In two of the Korean trials (SP-RE-003 [38] and I-ROSETTE [39]), patients who had achieved their LDL-C target based on NCEP ATP III guidelines at the end of the 8-week treatment period could receive additional treatment with rosuvastatin/ezetimibe during a 12-week extension period (at the same rosuvastatin dose as during the initial treatment period, with ezetimibe 10 mg added to the therapy regimen in patients previously receiving rosuvastatin as monotherapy); efficacy data are available for the extension period of SP-RE-003 [38].

In all trials, the primary endpoint was percentage change from baseline in LDL-C (Table 2). Where specified, this was assessed pooled across doses (i.e. rosuvastatin/ezetimibe vs rosuvastatin monotherapy). At baseline, demographics and lipid parameters were generally similar across treatment groups in each study [36,37,38,39,40,41]. Across studies, 55–63% of patients were male and, in each treatment arm, mean patient ages were 59–66 years [36,37,38,39,40,41]. Mean baseline levels of LDL-C were ≈100 mg/dL in ACTE [37], ≈150 mg/dL in MRS-ROZE [40], I-ROSETTE [39] and ROSE [41], and ≈160 mg/dL in SP-RE-003 [38] and GRAVITY [36]. Where specified, mean treatment compliance rates were ≥ 95% during the trials [36, 37, 39, 40].

Table 2 Efficacy of rosuvastatin/ezetimibe in adults with hypercholesterolemia in large, randomized phase III trials

In addition to the trials described above, data are also available from a smaller randomized, open-label, single-centre trial in which Chinese patients with non-ST-elevation acute coronary syndrome (including unstable angina and non-ST-elevation myocardial infarction) received combination therapy with rosuvastatin/ezetimibe 10 mg/10 mg (n = 42) or monotherapy with rosuvastatin 10 mg (n = 42) or 20 mg (n = 41) administered once daily for 12 weeks, commencing the day after percutaneous coronary intervention [42]. The primary endpoint in this trial was the proportion of patients achieving the 2011 European Society of Cardiology/European Atherosclerosis Society LDL-C goal of < 70 mg/dL at week 12 [42].

3.1 Versus Rosuvastatin Monotherapy

Rosuvastatin/ezetimibe combination therapy was significantly more effective than rosuvastatin monotherapy at reducing LDL-C in patients with hypercholesterolemia, including those at high or moderately high risk of CHD (primary endpoint) [pooled dose analyses; Table 2] [37,38,39,40,41]. Where reported, a significant (p < 0.001) benefit of rosuvastatin/ezetimibe over rosuvastatin monotherapy with respect to change in LDL-C was evident by week 4 of treatment [39, 40]. With respect to individual rosuvastatin dose comparisons in the Korean trials (i.e. rosuvastatin/ezetimibe 5 mg/10 mg vs rosuvastatin 5 mg; rosuvastatin/ezetimibe 10 mg/10 mg vs rosuvastatin 10 mg; rosuvastatin/ezetimibe 20 mg/10 mg vs rosuvastatin 20 mg), rosuvastatin/ezetimibe reduced LDL-C by a significantly (p < 0.05) greater percentage than the corresponding rosuvastatin monotherapy at each dose in all trials except ROSE (in which the difference was only significant for rosuvastatin/ezetimibe 5 mg/10 mg vs rosuvastatin 5 mg [41]) (Fig. 1) [38,39,40,41]. Of note, pooled data from ACTE demonstrated that adding ezetimibe to stable rosuvastatin 5 mg or 10 mg reduced LDL-C by 21%, while doubling the dose of rosuvastatin to 10 mg or 20 mg reduced LDL-C by 5.7% (Table 2; between-group difference 15.2%; p < 0.001) [37]. Rosuvastatin/ezetimibe was also associated with significantly (p < 0.001) greater reductions in LDL-C than rosuvastatin up-titration in individual treatment group comparisons (i.e. rosuvastatin/ezetimibe 5 mg/10 mg vs rosuvastatin 10 mg; rosuvastatin/ezetimibe 10 mg/10 mg vs rosuvastatin 20 mg) in ACTE (between-group differences 12.3% and 17.5%, respectively) [37]. In a post hoc analysis of data from MRS-ROZE comparing the efficacy of low- or intermediate-intensity rosuvastatin/ezetimibe and higher intensity rosuvastatin monotherapy, mean percent LDL-C reductions did not significantly differ between rosuvastatin/ezetimibe 5 mg/10 mg and rosuvastatin 10 mg or 20 mg recipients or between rosuvastatin/ezetimibe 10 mg/10 mg and rosuvastatin 20 mg recipients [43]. In all trials, significantly higher proportions of rosuvastatin/ezetimibe recipients than rosuvastatin monotherapy recipients achieved their LDL-C goals based on NCEP ATP III-recommended targets (Table 2) [37,38,39,40,41].

With respect to other lipid and lipoprotein parameters, rosuvastatin/ezetimibe also provided benefits over rosuvastatin monotherapy [37,38,39,40,41]. Rosuvastatin/ezetimibe was significantly more effective than rosuvastatin monotherapy in reducing total cholesterol and, in all studies other than ACTE, triglycerides (Table 2). Where reported, rosuvastatin/ezetimibe was additionally associated with significantly (p < 0.01 vs rosuvastatin monotherapy) greater reductions in non-HDL-C [37,38,39,40], apolipoprotein (Apo) B [37,38,39,40], and lipid and lipoprotein ratios (i.e. LDL-C/HDL-C, total cholesterol/HDL-C, non-HDL-C/HDL-C, and ApoB/ApoA-1) [37, 38]. Relative to rosuvastatin monotherapy, rosuvastatin/ezetimibe had no significant impact on HDL-C (Table 2) or, where reported, high-sensitivity C-reactive protein (hs-CRP) [37,38,39], ApoA-1 [37, 39, 40] or lipoprotein(a) [40].

In subgroup analyses in patients with diabetes mellitus in SP-RE-003 [38] (n = 81) and ACTE [37] (n = 103), the efficacy of rosuvastatin/ezetimibe versus rosuvastatin monotherapy was generally consistent with that observed in the overall study population. In SP-RE-003, patients with diabetes mellitus receiving rosuvastatin/ezetimibe 5 mg/10 mg had a significantly (p < 0.01) greater mean percent reduction in LDL-C than those receiving monotherapy with rosuvastatin 10 mg (and a numerically, albeit not significantly, greater reduction than those receiving monotherapy with rosuvastatin 20 mg) [38]. In subgroups of patients with diabetes mellitus (n = 135) or metabolic syndrome (n = 135) in MRS-ROZE, reductions in LDL-C were significantly (p < 0.001) greater with rosuvastatin/ezetimibe than rosuvastatin monotherapy, with treatment differences being more pronounced than in subgroups based on the absence of these conditions; rosuvastatin/ezetimibe was significantly (p ≤ 0.013) more potent in patients with diabetes mellitus than in those without diabetes and in patients with metabolic syndrome than in those without metabolic syndrome, while the effect of rosuvastatin monotherapy did not significantly differ between these subgroups [40]. Where specified [37], the benefit of rosuvastatin/ezetimibe over rosuvastatin monotherapy with respect to percent change from baseline in LDL-C was generally consistent across other prespecified subgroups such as those based on age, gender, race, risk group and baseline LDL-C level.

Improvements in LDL-C and other lipids were generally enhanced or maintained with rosuvastatin/ezetimibe treatment during the 12-week extension of SP-RE-003, which was entered by 216 patients who achieved their NCEP ATP III goal during the initial 8-week treatment period [38]. From week 8 to week 20 of the trial, mean LDL-C reductions of 3.66%, 0.71% and 1.88% were observed in rosuvastatin/ezetimibe 5 mg/10 mg, 10 mg/10 mg and 20 mg/10 mg recipients, respectively (primary endpoint of extension period). Mean changes in total cholesterol in these respective groups were − 3.84%, − 2.01% and − 1.65%, while mean changes in triglycerides were − 3.44%, − 2.50% and 12.26% [38].

Rosuvastatin/ezetimibe was also more effective than rosuvastatin monotherapy at reducing LDL-C in Chinese patients with non-ST-elevation acute coronary syndrome [42]. At weeks 4 and 12, the proportions of patients achieving an LDL-C goal of < 70 mg/dL were significantly (p < 0.05) higher with rosuvastatin/ezetimibe 10 mg/10 mg (50% and 81% at weeks 4 and 12) than with rosuvastatin 10 mg (7% and 33%) or 20 mg (17% and 68%). LDL-C reductions were significantly (p < 0.05) higher with rosuvastatin/ezetimibe 10 mg/10 mg than rosuvastatin 10 mg or 20 mg at both timepoints [42].

3.2 Versus Simvastatin/Ezetimibe

Rosuvastatin/ezetimibe combination therapy was more effective than simvastatin/ezetimibe combination therapy in lowering LDL-C in adults with hypercholesterolemia and a history of CHD or a CHD risk equivalent in GRAVITY, with rosuvastatin/ezetimibe 10 mg/10 mg being associated with a significantly greater reduction in LDL-C than simvastatin 40 mg/10 mg (but not 80 mg/10 mg) and rosuvastatin/ezetimibe 20 mg/10 mg being associated with a significantly greater LDL-C reduction than either simvastatin/ezetimibe 40 mg/10 mg or 80 mg/10 mg (Table 2) [36]. Furthermore, an LDL-C goal of < 100 mg/dL was achieved by a significantly higher proportion of rosuvastatin/ezetimibe 10 mg/10 mg recipients than simvastatin/ezetimibe 40 mg/10 mg (but not 80 mg/10 mg) recipients and by a significantly higher proportion of rosuvastatin/ezetimibe 20 mg/10 mg recipients than simvastatin/ezetimibe 40 mg/10 mg or 80 mg/10 mg recipients (Table 2) [36]. A more stringent LDL-C goal of < 70 mg/dL was achieved by significantly (p < 0.001) higher proportions of rosuvastatin/ezetimibe 20 mg/10 mg recipients than simvastatin/ezetimibe 40 mg/10 mg or 80 mg/10 mg recipients, whilst LDL-C < 70 mg/dL attainment rates did not significantly differ between rosuvastatin/ezetimibe 10 mg/10 mg recipients and simvastatin/ezetimibe 40 mg/10 mg or 80 mg/10 mg recipients [36]. Relative to statin monotherapy, the addition of ezetimibe reduced LDL-C levels by a further 9.9–14.3% across combination treatment groups [36].

Rosuvastatin/ezetimibe also showed benefits over simvastatin/ezetimibe with respect to changes in other lipids and lipoproteins from baseline to week 12 (after 6 weeks of combination therapy) [36]. Rosuvastatin/ezetimibe 10 mg/10 mg significantly (p < 0.05) reduced total cholesterol (Table 2), triglycerides (Table 2), non-HDL-C and ApoB levels, as well as total cholesterol/HDL-C, LDL-C/HDL-C, non-HDL-C/HDL-C and ApoB/ApoA-1 ratios, relative to simvastatin/ezetimibe 40 mg/10 mg. Rosuvastatin/ezetimibe 20 mg/10 mg significantly (p < 0.001) reduced these parameters relative to both simvastatin/ezetimibe 40 mg/10 mg and 80 mg/10 mg, whilst also significantly increasing HDL-C (p < 0.05 vs either simvastatin/ezetimibe dose; Table 2). There were no significant differences between rosuvastatin/ezetimibe and simvastatin/ezetimibe groups in ApoA-1 or hsCRP change from baseline [36].

4 Tolerability of Rosuvastatin/Ezetimibe

Oral rosuvastatin and oral ezetimibe are generally well tolerated both as monotherapies [14, 19,20,21] and when co-administered as either separate tablets [36,37,38] or a FDC [39,40,41], with FDC trials (i.e. ROSE [41], MRS-ROZE [40] and I-ROSETTE [39]; Sect. 3) being the focus of this section. The safety populations in ROSE [41], MRS-ROZE [40] and I-ROSETTE [39] comprised 123, 206 and 197 rosuvastatin/ezetimibe recipients, respectively, and 121, 204 and 195 rosuvastatin monotherapy recipients, respectively.

Across the FDC trials, adverse events (AEs) and treatment-related AEs (TRAEs) occurred in 11.2–21.4% and 1.9–5.7% of rosuvastatin/ezetimibe recipients versus 11.3–21.5% and 1.7–3.1% of rosuvastatin monotherapy recipients; the overall incidences of AEs and TRAEs did not significantly differ between rosuvastatin/ezetimibe and rosuvastatin monotherapy recipients in any trial [39,40,41]. Furthermore, rosuvastatin/ezetimibe and rosuvastatin monotherapy recipients did not significantly differ with respect to the incidences of various types of AEs [39, 41]. The most common AEs with rosuvastatin/ezetimibe, where specified, included those that were gastrointestinal (2.4% vs 4.1% of rosuvastatin monotherapy recipients in ROSE [41] and 3% vs 0.5% in I-ROSETTE [39]) or musculoskeletal (2.4% vs 0.8% [41] and 2.0% vs 0.5% [39], with this category specified to include connective tissue disorders in the latter study). Where reported, prespecified TRAEs [including gastrointestinal-related AEs, musculoskeletal-related AEs, skin and subcutaneous-related AEs, and drug-related alanine aminotransferase (ALT) elevations ≥ 3 × upper limit of normal (ULN)] occurred infrequently in rosuvastatin/ezetimibe and rosuvastatin monotherapy recipients (all ≤ 1.5%), with no clinically meaningful or statistically significant between-group differences [40].

Serious AEs (SAEs) were infrequent, occurring in 0.5–2.4% of rosuvastatin/ezetimibe recipients versus 0.5–1.7% of rosuvastatin monotherapy recipients in the FDC trials (no significant between-group differences) [39,40,41]. Where specified, no SAEs in rosuvastatin/ezetimibe recipients were drug related (although one rosuvastatin 10 mg monotherapy recipient experienced a serious drug-related AE in I-ROSETTE [39]) [39, 40]. Discontinuation of rosuvastatin/ezetimibe due to AEs occurred rarely (≤ 1.6% of patients in any study; no significant differences between rosuvastatin/ezetimibe and rosuvastatin monotherapy recipients) [39,40,41]. No deaths were reported [39, 40].

With respect to laboratory findings, ALT and aspartate aminotransferase (AST) elevations ≥ 3 × ULN [39,40,41] (where specified, two consecutive times [41]) and creatine kinase elevations ≥ 5 [39, 40] or ≥ 10 [41] × ULN were infrequent, occurring in ≤ 0.6% of rosuvastatin/ezetimibe recipients (vs ≤ 0.5% of rosuvastatin monotherapy recipients) in any trial. There were no significant differences between treatment groups [39,40,41].

Skeletal muscle effects (e.g. myalgia, myopathy and, rarely, rhabdomyolysis) can occur with rosuvastatin and have been reported in post-marketing experience with ezetimibe (very rarely in the case of rhabdomyolysis) [30]. Certain precautions thus pertain to the use of rosuvastatin/ezetimibe; consult local prescribing information for further details.

Safety data from SP-RE-003 [38] and the multinational ACTE [37] and GRAVITY [36] trials, in which rosuvastatin and ezetimibe were co-administered as separate tablets, were largely consistent with those from the FDC trials [39,40,41]. During GRAVITY, rosuvastatin/ezetimibe had a safety profile similar to that of simvastatin/ezetimibe; proportions of patients experiencing AEs were comparable across treatment arms [36]. While AEs occurred in significantly more rosuvastatin/ezetimibe recipients than rosuvastatin monotherapy recipients in SP-RE-003 (19.4% vs 9.4%; p < 0.01), the treatment groups did not significantly differ in the incidences of TRAEs or SAEs [38]. During the 12-week extension of SP-RE-003, adverse drug reactions and SAEs were comparable between patients who continued on rosuvastatin/ezetimibe therapy received during the initial 8-week treatment period and patients who switched from rosuvastatin monotherapy to rosuvastatin/ezetimibe at the start of the extension [38]. Also of note, when rosuvastatin/ezetimibe was compared with rosuvastatin up-titration in ACTE, rosuvastatin/ezetimibe and rosuvastatin up-titration recipients did not significantly differ with respect to incidences of AEs, TRAEs or SAEs [based on 95% CIs of between-group differences (pooled doses); no serious TRAEs or deaths occurred during the trial] [37]. Prespecified AEs of special interest (including hepatitis-, gallbladder- and gastrointestinal-related AEs, allergic reaction or rash, ALT or AST elevations ≥ 3 × ULN and creatine kinase elevations ≥ 10 × ULN with or without muscle symptoms) occurred infrequently (all ≤ 1.4% in either treatment group, except for gastrointestinal-related AEs, which were reported in 4.1% of rosuvastatin/ezetimibe recipients vs 1.4% of rosuvastatin up-titration recipients) and with no statistically significant differences between treatment groups [37].

5 Dosage and Administration of Rosuvastatin/Ezetimibe

Rosuvastatin/ezetimibe FDC is indicated as an adjunctive therapy to diet for the treatment of primary hypercholesterolemia in adults [30]. Patients should continue on an appropriate lipid-lowering diet whilst receiving rosuvastatin/ezetimibe. Rosuvastatin/ezetimibe is available in dosages including 5 mg/10 mg, 10 mg/10 mg and 20 mg/10 mg. The recommended dosage is one capsule (or tablet) of the selected strength each day [30]. Local prescribing information should be consulted for detailed information concerning contraindications, dose adjustments, special warnings and precautions, drug interactions and use in specific patient populations.

6 Place of Rosuvastatin/Ezetimibe in the Management of Hypercholesterolemia

Worldwide, CVD is the cause of considerable morbidity and mortality, hereby resulting in substantial healthcare expenditure [3]. The treatment of hypercholesterolemia (and, more specifically, elevated LDL-C) is an established strategy for reducing cardiovascular events and cardiovascular-related deaths [3]. While statins remain the cornerstone of the pharmacological management of hypercholesterolemia [2], many patients (particularly those at higher risk or with very high baseline LDL-C) are unable to achieve recommended LDL-C targets on statin therapy alone [5].

Recent clinical practice guidelines from the American College of Cardiology/American Heart Association suggest that it may be useful to combine statin therapy with a non-statin medication such as ezetimibe in certain circumstances [2]. In patients with very high-risk atherosclerotic CVD (ASCVD; i.e. a history of multiple major ASCVD events or one major ASCVD event and multiple high-risk factors) and an LDL-C level ≥ 70 mg/dL despite maximally tolerated statin therapy, the addition of ezetimibe is considered reasonable. In addition, it may be reasonable to add ezetimibe to statin therapy for patients aged ≤ 75 years with ASCVD who are not at very high risk, if LDL-C remains ≥ 70 mg/dL despite maximally tolerated statin therapy. With respect to primary ASCVD prevention, patients with severe hypercholesterolemia have a high lifetime risk of ASCVD and do not require ASCVD risk scores in order for clinicians to make decisions regarding statins; in patients with severe primary hypercholesterolemia (i.e. baseline LDL-C ≥ 190 mg/dL) aged 20–75 years, it is reasonable to add ezetimibe if LDL-C levels remain ≥ 100 mg/dL despite high-intensity statin therapy and/or if a < 50% reduction in LDL-C is achieved whilst receiving maximally tolerated statin therapy. In patients with non-severe statin-associated adverse effects, the guidelines recommend clinicians reassess and rechallenge to achieve maximal LDL-C reduction by modifying dosing regimen, prescribing an alternative statin or combining with non-statin therapy [2].

In comparison with the American College of Cardiology/American Heart Association guidelines, the European Society of Cardiology and European Atherosclerosis Society more broadly recommend the addition of ezetimibe for the lowering of lipids in patients who do not achieve their LDL-C goal whilst receiving a statin up to the highest recommended or tolerable dose [5]. In very high-risk patients with acute coronary syndromes, the addition of ezetimibe is recommended if the LDL-C target has not been achieved after 4–6 weeks of treatment with the highest tolerable statin dose [5]. Clinicians in both the EU and USA should advise all patients on the importance of lifestyle management (e.g. a healthy diet, weight control and physical activity) and appropriately monitor both adherence to a healthy lifestyle and the effects of lipid-lowering medications [2, 5].

Rosuvastatin/ezetimibe combination therapy, administered as an FDC or separate tablets, was demonstrated to be significantly more effective than rosuvastatin monotherapy at reducing LDL-C and total cholesterol in patients with hypercholesterolemia, including those at high or moderately high risk of CHD, in several well-designed (albeit short-term) clinical trials; indeed, the addition of ezetimibe to rosuvastatin was significantly more effective at reducing LDL-C and total cholesterol than was doubling the rosuvastatin dose in the multinational ACTE trial (Sect. 3.1). Benefits of rosuvastatin/ezetimibe versus rosuvastatin monotherapy for LDL-C reduction were generally observed across key subgroups, including patients with diabetes mellitus or metabolic syndrome (Sect. 3.1). Consistent with the substantial lipid-lowering capacity of rosuvastatin relative to various other statins (Table 1), rosuvastatin/ezetimibe improved LDL-C and total cholesterol by significantly greater degrees than simvastatin/ezetimibe in the multinational GRAVITY trial in adults with hypercholesterolemia and CHD or CHD risk equivalent (Sect. 3.2). In all aforementioned trials, significantly higher proportions of rosuvastatin/ezetimibe recipients than rosuvastatin monotherapy or simvastatin/ezetimibe recipients were able to achieve their LDL-C targets (Sect. 3). No studies have thus far assessed the efficacy of rosuvastatin/ezetimibe compared with that of atorvastatin/ezetimibe; like rosuvastatin, atorvastatin has high potency relative to other statins [2, 44] and comparative data would be of use in further clarifying the position of rosuvastatin/ezetimibe in the treatment of hypercholesterolemia.

The management of hypercholesterolemia ultimately aims to prevent atherosclerotic events [2, 5]. As of yet, no long-term trials have investigated cardiovascular outcomes in patients with hypercholesterolemia receiving rosuvastatin/ezetimibe, although preliminary evidence suggests that rosuvastatin/ezetimibe may improve the overall rate of myocardial infarction, unstable angina pectoris, cardiac death or stroke relative to rosuvastatin monotherapy in recipients with CHD [28]. Of note, rosuvastatin/ezetimibe has also been associated with greater coronary plaque regression than rosuvastatin monotherapy (considering the same dose of rosuvastatin) in intravascular ultrasound studies (Sect. 2), an outcome which has been proposed as a surrogate marker for cardiovascular benefit [45]. A large (n > 18,000), well-designed cardiovascular outcomes study evaluating simvastatin/ezetimibe has reported a modest but significant reduction in cardiovascular events with simvastatin/ezetimibe relative to simvastatin monotherapy over a median follow-up of 6 years [18] and may be regarded as proof of concept that the lowering of LDL-C by ezetimibe has cardioprotective effects [5]. In addition, both ezetimibe and rosuvastatin have been shown to significantly reduce cardiovascular events when administered alone in randomized, controlled trials [46,47,48].

Rosuvastatin and ezetimibe each have well-established safety profiles and are considered to be generally well-tolerated treatments [14, 19,20,21]. Similarly, rosuvastatin/ezetimibe was generally well tolerated as an FDC or when administered as separate tablets in key clinical trials in which patients were treated for ≤ 20 weeks (Sect. 4). Rosuvastatin/ezetimibe did not significantly differ from rosuvastatin monotherapy (including rosuvastatin administered at a doubled dose) with respect to incidences of TRAEs or SAEs. The safety profile of rosuvastatin/ezetimibe was also similar to that of simvastatin/ezetimibe (Sect. 4). Adverse effects on muscle (e.g. myalgia, myopathy and rhabdomyolysis) are possible with rosuvastatin/ezetimibe and precautions are warranted (Sect. 4); long-term safety data will be necessary to demonstrate whether rosuvastatin/ezetimibe reduces the risk of rare, dose-dependent, statin-related AEs such as rhabdomyolysis relative to high-intensity rosuvastatin monotherapy, thus circumventing tolerability concerns that accompany the use of high-dose statins.

Patient nonadherence to lipid-lowering medication poses a considerable challenge to the successful management of hypercholesterolemia [4, 11]. Through simplifying more complex medication regimens, FDCs may be expected to aid adherence to multiple drug therapies [4]. In many countries, rosuvastatin/ezetimibe is available as a FDC comprising ezetimibe 10 mg and variable doses of rosuvastatin (e.g. 5 mg, 10 mg, 20 mg), allowing for dosage to be individualised.

All statin regimens and ezetimibe are now widely available as generics, and the use of statins to lower cholesterol levels has been established as cost-effective across various patient populations [5]. In the secondary prevention of CHD, statins are highly cost-effective and the addition of low-cost ezetimibe to high-intensity statins produces further cost-effective reductions in LDL-C and CVD risk [5]. Cost-effectiveness analyses comparing rosuvastatin/ezetimibe with other available statin/ezetimibe combinations are lacking, although an Italian study suggests the average cost of rosuvastatin/ezetimibe FDC therapy may be less than that of simvastatin/ezetimibe [49]. The National Institute for Health and Care Excellence advises clinicians to select a statin of high intensity and low acquisition cost when prescribing statin therapy; it should be noted that atorvastatin is named as the statin of choice in the primary and secondary prevention of CVD [50]. Ezetimibe co-administered with statin therapy is recommended as an option in adults with primary hypercholesterolemia in whom LDL-C or total cholesterol is not adequately controlled after dose titration, or statin dose titration is limited due to intolerance, as well as in adults in whom a change from initial statin therapy to an alternative statin is being considered; it should be prescribed on the basis of lowest acquisition cost [50].

In conclusion, rosuvastatin/ezetimibe is an effective and generally well-tolerated treatment for hypercholesterolemia, indicated as an adjunctive therapy to diet. While additional cardiovascular outcomes data and head-to-head comparisons with atorvastatin/ezetimibe would be of interest, rosuvastatin/ezetimibe is a potent drug combination that extends the range of options available for the pharmacological management of primary hypercholesterolemia in adults.

Data Selection Rosuvastatin/Ezetimibe: 247 records identified

Duplicates removed

37

Excluded during initial screening (e.g. press releases; news reports; not relevant drug/indication; preclinical study; reviews; case reports; not randomized trial)

121

Excluded during writing (e.g. reviews; duplicate data; small patient number; nonrandomized/phase I/II trials)

26

Cited efficacy/tolerability articles

12

Cited articles not efficacy/tolerability

51

Search Strategy: EMBASE, MEDLINE and PubMed from 1946 to present. Clinical trial registries/databases and websites were also searched for relevant data. Key words were rosuvastatin, ezetimibe, Lipocomb, hypercholesterolemia, hyperlipidemia. Records were limited to those in English language. Searches last updated 12 June 2020