Skip to main content

Advertisement

Log in

The Role of Gold Nanoclusters as Emerging Theranostic Agents for Cancer Management

  • Nanoparticle-based Drug Delivery (M Gogoi, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of review

This review focuses on introducing the role of luminescent gold nanoclusters (AuNCs) as promising combinatorial agents for accurate diagnosis and image guided therapeutics for cancer management.

Recent findings

The unique opto-electronic properties as well as high biocompatibilty of luminescent AuNCs enable their use as tracers in optical imaging as well as precise multi-modal tumor imaging with X-ray/CT, PET and MRI. Moreover, the photostability of AuNCs in comparison to conventional fluorescent dyes has allowed their widespread use as sensitizing materials for enhanced photothermal, photodynamic and radiotherapy.

Summary

Luminescent noble MNCs, especially AuNCs, are rapidly gaining attention as new age nanotheranostic agents for targeted imaging and therapeutics due to their high biocompatibility, good photostability, unique optical properties and favourable pharmacokinetics especially in the field of cancer management. Moreover, the ease of synthesis, tunable photoemission and tumor targeting through biofunctionalization for a rapid and more sensitive diagnosis and efficacious therapeutic applications make them potential candidates for clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Palekar-Shanbhag P, Jog SV, Chogale MM, Gaikwad SS. Theranostics for cancer therapy. Curr Drug Deliv. 2013;10(3):357–62.

    Article  CAS  Google Scholar 

  2. Kulkarni NS, Guererro Y, Gupta N, Muth A, Gupta V. Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. J Drug Deliv Sci Technol. 2019;49:352–64 Available from: http://www.sciencedirect.com/science/article/pii/S177322471831219X.

    Article  CAS  Google Scholar 

  3. Fang M, Peng C-W, Pang D-W, Li Y. Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biol Med. 2012;9(3):151–63 Available from: https://pubmed.ncbi.nlm.nih.gov/23691472.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Xie J, Zheng Y, Ying JY. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J Am Chem Soc. 2009;131(3):888–9. https://doi.org/10.1021/ja806804u.

    Article  CAS  PubMed  Google Scholar 

  5. Yang X, Zhu S, Dou Y, Zhuo Y, Luo Y, Feng Y. Novel and remarkable enhanced-fluorescence system based on gold nanoclusters for detection of tetracycline. Talanta. 2014;122:36–42 Available from: http://www.sciencedirect.com/science/article/pii/S0039914013009909.

    Article  CAS  Google Scholar 

  6. Li Z-Y, Wu Y-T, Tseng W-L. UV-Light-induced improvement of fluorescence quantum yield of DNA-templated gold nanoclusters: application to ratiometric fluorescent sensing of nucleic acids. ACS Appl Mater Interfaces. 2015;7(42):23708–16. https://doi.org/10.1021/acsami.5b07766.

    Article  CAS  PubMed  Google Scholar 

  7. Shellaiah M, Simon T, Thirumalaivasan N, Sun KW, Ko F-H, Wu S-P. Cysteamine-capped gold-copper nanoclusters for fluorometric determination and imaging of chromium(VI) and dopamine [Internet]. Vol. 186, Mikrochimica acta. Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan; 2019. p. 788. Available from: http://europepmc.org/abstract/MED/31732881

  8. Shang L, Yang L, Stockmar F, Popescu R, Trouillet V, Bruns M, et al. Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. Nanoscale. 2012;4(14):4155–60. https://doi.org/10.1039/C2NR30219E.

    Article  CAS  PubMed  Google Scholar 

  9. Triulzi RC, Micic M, Giordani S, Serry M, Chiou W-A, Leblanc RM. Immunoasssay based on the antibody-conjugated PAMAM-dendrimer–gold quantum dot complex. Chem Commun. 2006;48:5068–70. https://doi.org/10.1039/B611278A.

    Article  Google Scholar 

  10. Varnavski O, Ramakrishna G, Kim J, Lee D, Goodson T. Critical size for the observation of quantum confinement in optically excited gold clusters. J Am Chem Soc. 2010;132(1):16–7. https://doi.org/10.1021/ja907984r.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R. Correlating the Crystal Structure of A Thiol-Protected Au25 Cluster and Optical Properties. J Am Chem Soc. 2008;130(18):5883–5. https://doi.org/10.1021/ja801173r.

    Article  CAS  PubMed  Google Scholar 

  12. Jin R, Zeng C, Zhou M, Chen Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev. 2016;116(18):10346–413. https://doi.org/10.1021/acs.chemrev.5b00703.

    Article  CAS  PubMed  Google Scholar 

  13. So PTC, Dong CY, Masters BR, Berland KM. Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng. 2000;2(1):399–429. https://doi.org/10.1146/annurev.bioeng.2.1.399.

    Article  CAS  PubMed  Google Scholar 

  14. Wu Z, Jin R. On the Ligand’s Role in the Fluorescence of Gold Nanoclusters. Nano Lett. 2010;10(7):2568–73. https://doi.org/10.1021/nl101225f.

    Article  CAS  PubMed  Google Scholar 

  15. Chang H-Y, Chang H-T, Hung Y-L, Hsiung T-M, Lin Y-W, Huang C-C. Ligand effect on the luminescence of gold nanodots and its application for detection of total mercury ions in biological samples. RSC Adv. 2013;3(14):4588–97. https://doi.org/10.1039/C3RA23036H.

    Article  CAS  Google Scholar 

  16. Shibu ES, Muhammed MAH, Tsukuda T, Pradeep T. Ligand exchange of Au25SG18 leading to functionalized gold clusters: spectroscopy, kinetics, and luminescence. J Phys Chem C. 2008;112(32):12168–76. https://doi.org/10.1021/jp800508d.

    Article  CAS  Google Scholar 

  17. Zhao Y, Detering L, Sultan D, Cooper ML, You M, Cho S, et al. Gold nanoclusters doped with (64)Cu for CXCR4 positron emission tomography imaging of breast cancer and metastasis. ACS Nano. 2016;10(6):5959–70 Available from: http://europepmc.org/abstract/MED/27159079.

    Article  CAS  Google Scholar 

  18. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, et al. Renal clearance of quantum dots. 2007;25(10):1165–70.

  19. Zhou C, Long M, Qin Y, Sun X, Zheng J. Luminescent gold nanoparticles with efficient renal clearance. Angew Chem Int Ed Eng. 2011;50(14):3168–72.

  20. Wang J-Y, Chen J, Yang J, Wang H, Shen X, Sun Y-M, et al. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy. Int J Nanomedicine. 2016;11:3475–85.

    Article  CAS  Google Scholar 

  21. Ahsan SM, Rao CM, Ahmad MF. Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona. Adv Exp Med Biol. 2018;1048:175–98.

    Article  CAS  Google Scholar 

  22. Shang L, Nienhaus GU. Metal nanoclusters: Protein corona formation and implications for biological applications. Int J Biochem Cell Biol. 2016 Jun;75:175–9.

    Article  CAS  Google Scholar 

  23. Liu J, Yu M, Zhou C, Zheng J. Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Mater Today. 2013;16(12):477–86 Available from: http://www.sciencedirect.com/science/article/pii/S1369702113003878.

    Article  CAS  Google Scholar 

  24. Yang L, Shang L, Nienhaus GU. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells. Nanoscale. 2013;5(4):1537–43.

    Article  CAS  Google Scholar 

  25. Shang L, Dörlich RM, Brandholt S, Schneider R, Trouillet V, Bruns M, et al. Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale. 2011;3(5):2009–14. https://doi.org/10.1039/C0NR00947D.

    Article  CAS  PubMed  Google Scholar 

  26. Mutas M, Strelow C, Kipp T, Mews A. Specific binding and internalization: an investigation of fluorescent aptamer-gold nanoclusters and cells with fluorescence lifetime imaging microscopy. Nanoscale. 2018;10(43):20453–61. https://doi.org/10.1039/C8NR06639F.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang C, Zhou Z, Qian Q, Gao G, Li C, Feng L, et al. Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging. J Mater Chem B. 2013;1(38):5045–53. https://doi.org/10.1039/C3TB20784F.

    Article  CAS  PubMed  Google Scholar 

  28. Liang G, Ye D, Zhang X, Dong F, Chen H, Zhang S, et al. One-pot synthesis of Gd3+-functionalized gold nanoclusters for dual model (fluorescence/magnetic resonance) imaging. J Mater Chem B. 2013;1(29):3545–52. https://doi.org/10.1039/C3TB20440E.

    Article  CAS  PubMed  Google Scholar 

  29. Hu D-H, Sheng Z-H, Zhang P-F, Yang D-Z, Liu S-H, Gong P, et al. Hybrid gold-gadolinium nanoclusters for tumor-targeted NIRF/CT/MRI triple-modal imaging in vivo. Nanoscale. 2013;5(4):1624–8.

    Article  CAS  Google Scholar 

  30. Lee S, Chen X. Dual-Modality Probes for in Vivo Molecular Imaging. Mol Imaging. 2009;8(2):7290.2009.00013. Available from: https://journals.sagepub.com/doi/abs/10.2310/7290.2009.00013

  31. Hu H, Huang P, Weiss OJ, Yan X, Yue X, Zhang MG, et al. PET and NIR optical imaging using self-illuminating (64)Cu-doped chelator-free gold nanoclusters. Biomaterials. 2014;35(37):9868–76 Available from: http://europepmc.org/abstract/MED/25224367.

    Article  CAS  Google Scholar 

  32. Khandelia R, Bhandari S, Pan UN, Ghosh SS, Chattopadhyay A. Gold nanocluster embedded albumin nanoparticles for two-photon imaging of cancer cells accompanying drug delivery. Small. 2015;11(33):4075–81. https://doi.org/10.1002/smll.201500216.

    Article  CAS  PubMed  Google Scholar 

  33. Chen D, Luo Z, Li N, Lee JY, Xie J, Lu J. amphiphilic polymeric nanocarriers with luminescent gold nanoclusters for concurrent bioimaging and controlled drug release. Adv Funct Mater. 2013;23(35):4324–31. https://doi.org/10.1002/adfm.201300411.

    Article  CAS  Google Scholar 

  34. Vankayala R, Kuo C-L, Nuthalapati K, Chiang C-S, Hwang KC. Nucleus-targeting gold nanoclusters for simultaneous in vivo fluorescence imaging, gene delivery, and NIR-Light activated photodynamic therapy. Adv Funct Mater. 2015;25(37):5934–45. https://doi.org/10.1002/adfm.201502650.

    Article  CAS  Google Scholar 

  35. Samani RK, Tavakoli MB, Maghsoudinia F, Motaghi H, Hejazi SH, Mehrgardi MA. Trastuzumab and folic acid functionalized gold nanoclusters as a dual-targeted radiosensitizer for megavoltage radiation therapy of human breast cancer. Eur J Pharm Sci. 2020;153:105487 Available from: http://www.sciencedirect.com/science/article/pii/S0928098720302761.

    Article  CAS  Google Scholar 

  36. Zhang X, Chen M, Zhang Y, Hou Y, Wu Y, Yao M, et al. Monoclonal-antibody-templated gold nanoclusters for HER2 receptors targeted fluorescence imaging. ACS Appl Bio Mater. 2020;3(10):7061–6. https://doi.org/10.1021/acsabm.0c00905.

    Article  CAS  Google Scholar 

  37. Ghahremani F, Kefayat A, Shahbazi-Gahrouei D, Motaghi H, Mehrgardi MA, Haghjooy-Javanmard S. AS1411 aptamer-targeted gold nanoclusters effect on the enhancement of radiation therapy efficacy in breast tumor-bearing mice. Nanomedicine. 2018;13(20):2563–78. https://doi.org/10.2217/nnm-2018-0180.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou F, Feng B, Yu H, Wang D, Wang T, Liu J, et al. Cisplatin prodrug-conjugated gold nanocluster for fluorescence imaging and targeted therapy of the breast cancer. Theranostics. 2016;6(5):679–87 Available from: https://pubmed.ncbi.nlm.nih.gov/27022415.

    Article  CAS  Google Scholar 

  39. Kong Y, Chen J, Gao F, Brydson R, Johnson B, Heath G, et al. Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: preparation, characterization, cancer targeting and imaging. Nanoscale. 2013;5(3):1009–17. https://doi.org/10.1039/C2NR32760K.

    Article  CAS  PubMed  Google Scholar 

  40. Liang G, Jin X, Zhang S, Xing D. RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials. 2017;144:95–104 Available from: http://www.sciencedirect.com/science/article/pii/S0142961217305276.

    Article  CAS  Google Scholar 

  41. Zhang P, Yang XX, Wang Y, Zhao NW, Xiong ZH, Huang CZ. Rapid synthesis of highly luminescent and stable Au20 nanoclusters for active tumor-targeted imaging in vitro and in vivo. Nanoscale. 2014;6(4):2261–9. https://doi.org/10.1039/C3NR05269A.

    Article  CAS  PubMed  Google Scholar 

  42. Luo D, Wang X, Zeng S, Ramamurthy G, Burda C, Basilion JP. Targeted gold nanocluster-enhanced radiotherapy of prostate cancer. Small. 2019;15(34):1900968. https://doi.org/10.1002/smll.201900968.

    Article  CAS  Google Scholar 

  43. Davis ME, Chen Z. (Georgia), Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82. https://doi.org/10.1038/nrd2614.

    Article  CAS  PubMed  Google Scholar 

  44. Liu J, Yu M, Zhou C, Yang S, Ning X, Zheng J. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance. J Am Chem Soc. 2013;135(13):4978–81 Available from: https://pubmed.ncbi.nlm.nih.gov/23506476.

    Article  CAS  Google Scholar 

  45. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.

    Article  CAS  Google Scholar 

  46. Zhang Y, Li J, Jiang H, Zhao C, Wang X. Rapid tumor bioimaging and photothermal treatment based on GSH-capped red fluorescent gold nanoclusters. RSC Adv. 2016;6(68):63331–7. https://doi.org/10.1039/C6RA10409F.

    Article  CAS  Google Scholar 

  47. Gu W, Zhang Q, Zhang T, Li Y, Xiang J, Peng R, et al. Hybrid polymeric nano-capsules loaded with gold nanoclusters and indocyanine green for dual-modal imaging and photothermal therapy. J Mater Chem B. 2016;4(5):910–9. https://doi.org/10.1039/C5TB01619C.

    Article  CAS  PubMed  Google Scholar 

  48. Lee S, Lee C, Park S, Lim K, Kim SS, Kim JO, et al. Facile fabrication of highly photothermal-effective albumin-assisted gold nanoclusters for treating breast cancer. Int J Pharm. 2018;553(1):363–74 Available from: http://www.sciencedirect.com/science/article/pii/S0378517318308068.

    Article  CAS  Google Scholar 

  49. Dolmans DEJGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–7. https://doi.org/10.1038/nrc1071.

    Article  CAS  PubMed  Google Scholar 

  50. Nair LV, Nazeer SS, Jayasree RS, Ajayaghosh A. Fluorescence Imaging Assisted Photodynamic Therapy Using Photosensitizer-Linked Gold Quantum Clusters. ACS Nano. 2015;9(6):5825–32. https://doi.org/10.1021/acsnano.5b00406.

    Article  CAS  PubMed  Google Scholar 

  51. Huang P, Lin J, Wang S, Zhou Z, Li Z, Wang Z, et al. Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials. 2013;34(19):4643–54 Available from: https://pubmed.ncbi.nlm.nih.gov/23523428.

    Article  CAS  Google Scholar 

  52. Ho-Wu R, Yau SH, Goodson T. Efficient singlet oxygen generation in metal nanoclusters for two-photon photodynamic therapy applications. J Phys Chem B. 2017;121(43):10073–80. https://doi.org/10.1021/acs.jpcb.7b09442.

    Article  CAS  PubMed  Google Scholar 

  53. Tang S, Peng C, Xu J, Du B, Wang Q, Vinluan RD 3rd, et al. Tailoring renal clearance and tumor targeting of ultrasmall metal nanoparticles with particle density. Angew Chem Int Ed Engl. 2016;55(52):16039–43 Available from: https://pubmed.ncbi.nlm.nih.gov/27882633.

    Article  CAS  Google Scholar 

  54. Du B, Jiang X, Das A, Zhou Q, Yu M, Jin R, et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat Nanotechnol. 2017;12(11):1096–102. https://doi.org/10.1038/nnano.2017.170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

KS thanks Department of Science and Technology, Government of India for INSPIRE PhD fellowship (IF - 180560). AS acknowledge support from Institute of Nano Science and Technology Mohali.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asifkhan Shanavas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nanoparticle-based Drug Delivery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sood, K., Shanavas, A. The Role of Gold Nanoclusters as Emerging Theranostic Agents for Cancer Management. Curr Pathobiol Rep 9, 33–42 (2021). https://doi.org/10.1007/s40139-021-00222-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-021-00222-4

Keywords

Navigation