Skip to main content

Advertisement

Log in

The Impact of Pre-analytical Factors on the Reliability of miRNA Measurements

  • Biospecimens Science and Evidence-Based Standards for Precision Medicine (F Betsou, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

In this review, we highlight the importance of using standardized procedures and protocols for circulating miRNA isolation, detection, and quantification, in order to establish their role as non-invasive biomarkers in the clinical setting.

Recent Findings

Specific miRNAs have already been investigated as promising prognostic and diagnostic markers in various types of cancer. Circulating microRNAs detected in plasma are continuously and intensively explored as non-invasive prognostic and diagnostic markers in a variety of human diseases and mainly in cancer. These miRNAs are remarkably stable in biological fluids and their expression profiles have been shown to represent a compelling non-invasive biomarker for cancer diagnosis.

Summary

Circulating miRNAs are remarkably stable, even in the extracellular environment with high RNAse activity. However, circulating miRNA quantitative measurements could be significantly influenced by several external and intra-individual factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13:358–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Markou A, Yousef GM, Stathopoulos E, Georgoulias V, Lianidou. Prognostic significance of metastasis-related microRNAs in early breast cancer patients with a long follow-up. Clin Chem. 2014;60:197–205.

    Article  CAS  PubMed  Google Scholar 

  3. Markou A, Sourvinou I, Vorkas PA, Yousef GM, Lianidou E. Clinical evaluation of microRNA expression profiling in non-small cell lung cancer. Lung Cancer. 2013;81:388–96.

    Article  CAS  PubMed  Google Scholar 

  4. Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V, Lianidou ES. Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem. 2008;54:1696–704.

    Article  CAS  PubMed  Google Scholar 

  5. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.

    Article  CAS  PubMed  Google Scholar 

  7. •• Halvorsen AR, Bjaanæs M, LeBlanc M, Holm AM, Bolstad N, Rubio L, et al. A unique set of 6 circulating microRNAs for early detection of non-small cell lung cancer. Oncotarget. 2016;7:37250–9. This study identified 6 circulating microRNAs as promising biomarkers for the detection of early-stage lung cancer, capable of discriminating lung cancer patients from those with chronic obstructive pulmonary disease (COPD) and healthy volunteers.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen M, Calin GA, Meng QH. Circulating microRNAs as promising tumor biomarkers. Adv Clin Chem. 2014;67:189–214.

    Article  CAS  PubMed  Google Scholar 

  9. Bianchi F. Lung cancer early detection: the role of circulating MicroRNAs. EBioMedicine. 2015;2:1278–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Corrêa TA, Rogero MM. Polyphenols regulating microRNAs and inflammation biomarkers in obesity. Nutrition. 2019;59:150–7.

    Article  CAS  PubMed  Google Scholar 

  11. Giangreco AA, Vaishnav A, Wagner D, Finelli A, Fleshner N, Van der Kwast T, et al. Tumor suppressor microRNAs, miR-100 and -125b, are regulated by 1,25-dihydroxyvitamin D in primary prostate cells and in patient tissue. Cancer Prev Res (Phila). 2013;6:483–94.

    Article  CAS  Google Scholar 

  12. Ooi JY, Bernardo BC, McMullen JR. The therapeutic potential of miRNAs regulated in settings of physiological cardiac hypertrophy. Future Med Chem. 2014;6:205–22.

    Article  CAS  PubMed  Google Scholar 

  13. Wang L, Lv Y, Li G, Xiao J. MicroRNAs in heart and circulation during physical exercise. J Sport Health Sci. 2018;7:433–41.

    Article  PubMed  PubMed Central  Google Scholar 

  14. McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem. 2011;57:833–40.

    Article  CAS  PubMed  Google Scholar 

  15. Becker N, Lockwood CM. Pre-analytical variables in miRNA analysis. Clin Biochem. 2013;46:861–8.

    Article  CAS  PubMed  Google Scholar 

  16. Zampetaki A, Mayr M. Analytical challenges and technical limitations in assessing circulating miRNAs. Thromb Haemost. 2012;108:592–8.

    Article  CAS  PubMed  Google Scholar 

  17. Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ. Comparing the MicroRNA spectrum between serum and plasma. PLoS One. 2012;7:e41561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tan GW, Khoo AS, Tan LP. Evaluation of extraction kits and RT-qPCR systems adapted to high-throughput platform for circulating miRNAs. Sci Rep. 2015;5:9430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. • Shiotsu H, Okada K, Shibuta T, Kobayashi Y, Shirahama S, Kuroki C, et al. The influence of pre-analytical factors on the analysis of circulating MicroRNA. Microrna. 2018;7:195–203. In this study, the pre-analytical factors causing variation in the analysis of miRNA were examined. The study was also focused on the differences in the miRNA levels in plasma and serum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Häusler SF, Keller A, Chandran PA, Ziegler K, Zipp K, Heuer S, et al. Whole blood-derived miRNA profiles as potential new tools for ovarian cancer screening. Br J Cancer. 2010;103:693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. • Pan J, Zhou C, Zhao X, He J, Tian H, Shen W, et al. A two-miRNA signature (miR-33a-5p and miR-128-3p) in whole blood as potential biomarker for early diagnosis of lung cancer. Sci Rep. 2018;8:16699. Results of this study have shown that the expression levels of two miRNAs (miR-33a-5p and miR-128-3p) in whole blood samples could be important non-invasive biomarkers for diagnosing lung cancer at an early stage and that their diagnostic values are superior to traditional tumor markers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tiberio P, Callari M, Angeloni V, Daidone MG, Appierto V. Challenges in using circulating miRNAs as cancer biomarkers. Biomed Res Int. 2015;2015:731479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheng HH, Yi HS, Kim Y, Kroh EM, Chien JW, Eaton KD, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One. 2013;8:e64795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murray MJ, Watson HL, Ward D, Bailey S, Ferraresso M, Nicholson JC, et al. “Future-proofing” blood processing for measurement of circulating miRNAs in samples from biobanks and prospective clinical trials. Cancer Epidemiol Biomark Prev. 2018;27:208–18.

    Article  CAS  Google Scholar 

  25. Sourvinou IS, Markou A, Lianidou ES. Quantification of circulating miRNAs in plasma: effect of preanalytical and analytical parameters on their isolation and stability. J Mol Diagn. 2013;15:827–34.

    Article  CAS  PubMed  Google Scholar 

  26. Moret I, Sánchez-Izquierdo D, Iborra M, Tortosa L, Navarro-Puche A, Nos P, et al. Assessing an improved protocol for plasma microRNA extraction. PLoS One. 2013;8:e82753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McAlexander MA, Phillips MJ, Witwer KW. Comparison of methods for miRNA extraction from plasma and quantitative recovery of RNA from cerebrospinal fluid. Front Genet. 2013;4:83.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Balzano F, Deiana M, Dei Giudici S, Oggiano A, Baralla A, Pasella S, et al. miRNA stability in frozen plasma samples. Molecules. 2015;20:19030–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grasedieck S, Schöler N, Bommer M, Niess JH, Tumani H, Rouhi A, et al. Impact of serum storage conditions on microRNA stability. Leukemia. 2012;26:2414–6.

    Article  CAS  PubMed  Google Scholar 

  30. Kirschner MB, Kao SC, Edelman JJ, Armstrong NJ, Vallely MP, van Zandwijk N, et al. Haemolysis during sample preparation alters microRNA content of plasma. PLoS One. 2011;6:e24145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 2014;11:145–56.

    Article  CAS  PubMed  Google Scholar 

  32. Cuk K, Zucknick M, Heil J, Madhavan D, Schott S, Turchinovich A, et al. Circulating microRNAs in plasma as early detection markers for breast cancer. Int J Cancer. 2013;132:1602–12.

    Article  CAS  PubMed  Google Scholar 

  33. Al-Qatati A, Akrong C, Stevic I, Pantel K, Awe J, Saranchuk J, et al. Plasma microRNA signature is associated with risk stratification in prostate cancer patients. Int J Cancer. 2017;141:1231–9.

    Article  CAS  PubMed  Google Scholar 

  34. •• Ward Gahlawat A, Lenhardt J, Witte T, Keitel D, Kaufhold A, Maass KK, et al. Evaluation of storage tubes for combined analysis of circulating nucleic acids in liquid biopsies. Int J Mol Sci. 2019;20. In this study, long-term blood collection tubes from four different vendors in preserving circulating nucleic acids in blood sampled for routine molecular diagnostics were compared.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Lianidou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biospecimens Science and Evidence-Based Standards for Precision Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markou, A.N., Lianidou, E.S. The Impact of Pre-analytical Factors on the Reliability of miRNA Measurements. Curr Pathobiol Rep 7, 29–33 (2019). https://doi.org/10.1007/s40139-019-00191-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-019-00191-9

Keywords

Navigation