Skip to main content
Log in

Optimizing the performance of extended-gate field-effect transistor (EGFET) pH sensor by regulating the structural properties of the nanostructured porous silicon layer

  • Research
  • Published:
Journal of Theoretical and Applied Physics

Abstract

We report the performance of extended-gate field-effect transistor (EGFET) pH sensors based on the properties of nanostructured porous silicon layer (nano PSi). Four different forms of nano PSi layers with different characteristic features are used as a sensor for determining the pH level. The synthesized nano PSi layer was prepared by laser-assisted etching of n-type (100) by using different illumination intensities 15, 30, 45 and 60 mW/cm2 of 530 nm laser wavelength. The structural and morphological properties of nano PSi were investigated through exploring scanning electron microscopy, X-ray diffraction (XRD) and gravimetrical measurements. Nano PSi with pore-like structures of various pore shapes and sizes are as follows: fine circular pores, star full pore, circular pores and rectangular pores; star full pore shape was prepared through varying the laser illumination intensity. The Fourier transform infrared spectroscopy, current–voltage measurements and specific surface area of were employed to describe the density of the hydrogenated dangling bonds (Si–Hx) of the nano PSi layer. The synthesized nano PSi pH sensors were tested and dry out in the pH range from 3 to 11 at room temperature. The performance of nano PSi pH sensors was comparatively analyzed based on the density of (Si–Hx), specific surface area, porosity and layer thickness of nano PSi. Concerning EGFET pH sensor showed noticeably enhanced pH sensitivity and linearity with increasing the density of (Si–Hx) and specific surface area. Higher sensitivity with excellent linearity was obtained for pore-like structures of circular pore shapes when the laser illumination intensity was about 45 mW/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Canham, L.: Handbook of porous silicon. Springer, Berlin (2014)

    Google Scholar 

  2. Adawyia, J.H., Alwan, M.A., Allaa, A.J.: Optimizing of porous silicon morphology for synthesis of silver nanoparticles. Microporous Mesoporous Mater. 227, 152–160 (2016)

    Article  Google Scholar 

  3. Alwan, A.M., Hayder, A.J., Jabbar, A.A.: Study on morphological and structural properties of silver plating on laser etched silicon. Surf. Coat Technol. 283, 22–28 (2015)

    Article  Google Scholar 

  4. Chou, J.-C., Yen, C.-H.: Preparation of a PH sensor, the prepared PH sensor, system comprising the same and measurement using the system. Google Patents (2007)

  5. Bousse, L., De Rooij, N.F., Bergveld, P.: Operation of chemically sensitive field-effect sensors as a function of the insulator–electrolyte interface. IEEE Trans. Electron Devices 30, 1263–1270 (1983)

    Article  ADS  Google Scholar 

  6. Yao, P.-C., Chiang, J.-L., Lee, M.-C.: Application of sol–gel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor. Solid State Sci. 28, 47–54 (2014)

    Article  Google Scholar 

  7. Zhang, X.: Morphology and formation mechanisms of porous silicon. J. Electrochem. Soc. 151, C69–C80 (2004)

    Article  Google Scholar 

  8. Dalilottojari, A., Tong, W.Y., McInnes, S., Voelcker, N.H.: Biocompatibility and bioactivity of porous silicon. Porous silicon: from formation to application, pp. 319–335. CRC Press, Boca Raton (2016)

    Google Scholar 

  9. Cullis, A., Canham, L., Calcott, P.: The structural and luminescence properties of porous silicon. J. Appl. Phys. 82, 909–965 (1997)

    Article  ADS  Google Scholar 

  10. Sabah, F.A., Ahmed, N.M., Hassan, Z., Almessiere, M.A., Al-Hardan, N.H.: Sensitivity of CuS membrane pH sensor with and without MOSFET. JOM 69, 1134–1142 (2017)

    Article  Google Scholar 

  11. Wail, H.A., Dheyab, A.B., Alwan, A.M.: Optimization and synthesis of gold nanoparticles on N-type porous silicon substrates as highly-gas sensitive. Int. J. Mech. Eng. Technol. 9, 1393–1401 (2018)

    Google Scholar 

  12. Alwan, A.M., Rashid, R.B., Dheyab, A.B.: Morphological and electrical properties of gold nanoparticles/macroPorous silicon for CO2 gas. Iraqi J. Sci. 59, 57–66 (2018)

    Google Scholar 

  13. Zayer, M.Q., Alwan, A.M., Ahmed, A.S., Dheyab, A.B.: Accurate controlled deposition of silver nanoparticles on porous silicon by drifted ions in electrolytic solution. Curr. Appl. Phys. 19, 1024–1030 (2019)

    Article  ADS  Google Scholar 

  14. Alwan, A.M., Abdulrazaq, O.A.: Aging effect on the photosynthesized porous silicon. Int. J. Mod. Phys. B 22, 417–422 (2008)

    Article  ADS  Google Scholar 

  15. Dheyab, A.B., Alwan, A.M., Zayer, M.Q.: Optimizing of gold nanoparticles on porous silicon morphologies for a sensitive carbon monoxide gas sensor device. Plasmonics 14, 501–509 (2019)

    Article  Google Scholar 

  16. Alwan, A.M., Hashim, D.A., Jawad, M.F.: Optimizing of porous silicon alloying process with bimetallic nanoparticles. Gold Bull. 51, 175–184 (2018)

    Article  Google Scholar 

  17. Alwan, A.M., Dheyab, A.B., Allaa, A.J.: Study of the influence of incorporation of gold nanoparticles on the modified porous silicon sensor for petroleum gas detection. Eng. Technol. J. 35, 811–815 (2017)

    Google Scholar 

  18. Gupta, A., Chen, G., Joshi, P., Tadigadapa, S., Eklund, P.: Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 6, 2667–2673 (2006)

    Article  ADS  Google Scholar 

  19. Mikhelashvili, V., Meyler, B., Yofis, S., Padmanabhan, R., Eisenstein, G.: Negative differential resistance in three terminal photodetectors. Appl. Phys. Lett. 108, 253504 (2016)

    Article  ADS  Google Scholar 

  20. Santinacci, L., Djenizian, T.: Electrochemical pore formation onto semiconductor surfaces. C. R. Chim. 11, 964–983 (2008)

    Article  Google Scholar 

  21. Steiner, P., Kozlowski, F., Lang, W.: Light-emitting porous silicon diode with an increased electroluminescence quantum efficiency. Appl. Phys. Lett. 62, 2700–2702 (1993)

    Article  ADS  Google Scholar 

  22. Canham, L.T.: Properties of porous silicon. Institute of Electrical Engineers, London (1997)

    Google Scholar 

  23. Naseef, I.A., Dheyab, A.B., Wali, L.A., Alwan, A.M.: Perfect incorporation of AuNPs on the p-n+ porous silicon for highly-efficient solar cells. Optik 198, 163317 (2019)

    Article  ADS  Google Scholar 

  24. Canham, L.: Pore volume porosity in porous silicon. In: Canham, L. (ed.) Handbook of porous silicon, pp. 135–142. Springer, Berlin (2014)

    Google Scholar 

  25. Amato, G., Rosenbauer, M.: Absorption and photoluminescence in porous silicon. Gorden and Breach Science Publishers, Amsterdam (1996)

    Google Scholar 

  26. Secret, E., Leonard, C., Kelly, S.J., Uhl, A., Cozzan, C., Andrew, J.S.: Size control of porous silicon-based nanoparticles via pore-wall thinning. Langmuir 32, 1166–1170 (2016)

    Article  Google Scholar 

  27. Ramesh, M., Nagaraja, H.: Effect of current density on morphological, structural and optical properties of porous silicon. Mater. Today Chem. 3, 10–14 (2017)

    Article  Google Scholar 

  28. Media, E.-M., Outemzabet, R.: Surface chemistry of a hydrogenated mesoporous p-type silicon. Appl. Surf. Sci. 395, 61–65 (2017)

    Article  ADS  Google Scholar 

  29. Anderson, R.C., Muller, R.S., Tobias, C.W.: Investigations of the electrical properties of porous silicon. J. Electrochem. Soc. 138, 3406–3411 (1991)

    Article  ADS  Google Scholar 

  30. Chien, Y.-S., Tsai, W.-L., Lee, I.-C., Chou, J.-C., Cheng, H.-C.: A novel pH sensor of extended-gate field-effect transistors with laser-irradiated carbon-nanotube network. IEEE Electron Device Lett. 33, 1622–1624 (2012)

    Article  ADS  Google Scholar 

  31. Yao, P.C., Chiang, J.L., Lee, M.C.: Application of sol–gel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor. Solid State Sci. 28, 47–54 (2014)

    Article  Google Scholar 

  32. Das, A., et al.: Highly sensitive palladium oxide thin film extended gate FETs as pH sensor. Sensors Actuators B Chem. 205, 199–205 (2014)

    Article  Google Scholar 

  33. Pullano, S.A., Tasneem, N.T., Mahbub, I., Shamsir, S., Greco, M., Islam, S.K., Fiorillo, A.S.: Deep submicron EGFET based on transistor association technique for chemical sensing. Sensors 19(5), 1063 (2019)

    Article  Google Scholar 

  34. Jabbar, A.A., Haider, A.J., Haider, M.J., Al-azawi, K.F.: Preparation and characterization of NiO/PSi as self-cleaning surface. J. Mater. Res. Technol. 9(6), 15123–15131 (2020)

    Article  Google Scholar 

  35. Pullano, S.A., Greco, M., Fiorillo, S.A., Mahbub, I., Tasneem, N.T., Shamsir, S., Islam, S.K.: Design and fabrication of an EGFET based chemical sensor using transistor association technique. In: 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (pp. 1–5). IEEE, London (2020)

  36. Chiang, J., Chen, Y., Chou, J., Cheng, C.: Temperature effect on AlN/SiO2 gate pH-ion-sensitive field-effect transistor devices temperature effect on AlN/SiO2 gate pH-ion-sensitive field-effect transistor devices. Jpn. J. Appl. Phys. 41, 541–545 (2002)

    Article  ADS  Google Scholar 

  37. Alwan, A.M.: Calculation of energy band gap of porous silicon based on the carrier transport mechanisms. Eng. Technol. 25(10), 1143–1148 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alwan M. Alwan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alwan, A.M., Zayer, M.Q., Jabbar, A.A. et al. Optimizing the performance of extended-gate field-effect transistor (EGFET) pH sensor by regulating the structural properties of the nanostructured porous silicon layer. J Theor Appl Phys 14 (Suppl 1), 61–70 (2020). https://doi.org/10.1007/s40094-020-00403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40094-020-00403-3

Keywords

Navigation