Skip to main content
Log in

Exopolysaccharides produced by Lactobacillus plantarum: technological properties, biological activity, and potential application in the food industry

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Some lactic acid bacteria are capable of producing capsular or extracellular polysaccharides, with desirable technological properties and biological activities. Such polysaccharides produced by lactic acid bacteria are called exopolysaccharides and can be used to alter rheological properties, acting in processes involving viscosity, emulsification, and flocculation, among others. They may also be involved in prebiotic, probiotic, and biological activities, as well as having potential application in the food industry. In this mini-review, the objectives were to present some beneficial properties of exopolysaccharides (EPS) produced by Lactobacillus plantarum that have not been commercially explored. For that, the article focused to summarize revision of current publications within the following topics: (1) rheological properties, (2) prebiotic properties, (3) biological activities, and (4) potential application in the food industry. EPS produced by Lb. plantarum can be used as gelling agent, emulsifier, or stabilizer for food products. The glucan nature of the produced EPS enhances probiotic properties of this LAB species. Lactobacillus plantarum EPS has antioxidant, antibiofilm, and antitumor activities. Finally, there is an improvement in texture of fermented food products where Lb. plantarum is used as starter culture which is related to EPS production in situ. Therefore, EPS produced by Lb. plantarum have important and desirable properties to be explored for several applications, including health and food areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ale EC, Perezlindo MJ, Pavón Y, Peralta GH, Costa S, Sabbag N, Bergamini C, Reinheimer JA, Binetti AG (2016) Technological, rheological and sensory characterizations of a yogurt containing an exopolysaccharide extract from Lactobacillus fermentum Lf2, a new food additive. Food Res Int 90:259–267

    Article  CAS  Google Scholar 

  • Ayyash M, Abu-Jdayil B, Hamed F, Shaker R (2018) Rheological, textural, microstructural and sensory impact of exopolysaccharide-producing Lactobacillus plantarum isolated from camel milk on low-fat akawi cheese. LWT Food Sci Technol 87:423–431

    Article  CAS  Google Scholar 

  • Caggianiello G, Kleerebezem M, Spano G (2016) Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl Microbiol Biotechnol 100(9):3877–3886

    Article  CAS  Google Scholar 

  • Dabour N, Kheadr E, Benhamou N, Fliss I, LaPointe G (2006) Improvement of texture and structure of reduced-fat Cheddar cheese by exopolysaccharide-producing lactococci. J Dairy Sci 89(1):95–110

    Article  CAS  Google Scholar 

  • Das D, Baruah R, Goyal A (2014) A food additive with prebiotic properties of an α-d-glucan from Lactobacillus plantarum DM5. Int J Biol Macromol 69:20–26

    Article  CAS  Google Scholar 

  • De Palencia PF, Werning ML, Sierra-Filardi E, Dueñas MT, Irastorza A, Corbí AL, López P (2009) Probiotic properties of the 2-substituted (1, 3)-β-D-glucan-producing bacterium Pediococcus parvulus 2.6. Appl Environ Microbiol 75(14):4887–4891

    Article  Google Scholar 

  • De Vuyst L, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23(2):153–177

    Article  Google Scholar 

  • Dertli E, Colquhoun IJ, Gunning AP, Bongaerts RJ, Le Gall G, Bonev BB, Mayer MJ, Narbad A (2013) Structure and biosynthesis of two exopolysaccharides produced by Lactobacillus johnsonii FI9785. J Biol Chem 288(44):31938–31951

    Article  CAS  Google Scholar 

  • Dertli E, Toker OS, Durak MZ, Yilmaz MT, Tatlısu NB, Sagdic O, Cankurt H (2016) Development of a fermented ice-cream as influenced by in situ exopolysaccharide production: rheological, molecular, microstructural and sensory characterization. Carbohydr Polym 136:427–440

    Article  CAS  Google Scholar 

  • Dilna SV, Surya H, Aswathy RG, Varsha KK, Sakthikumar DN, Pandey A, Nampoothiri KM (2015) Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF 4. LWT Food Sci Technol 64(2):1179–1186

    Article  CAS  Google Scholar 

  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87(2):951–962

    Article  CAS  Google Scholar 

  • Duboc P, Mollet B (2001) Applications of exopolysaccharides in the dairy industry. Int Dairy J 11(9):759–768

    Article  CAS  Google Scholar 

  • Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, Motherway MO, Shanahan F, Nally K, Dougan G, Sinderen D (2012) Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci 109(6):2108–2113

    Article  CAS  Google Scholar 

  • Fontana C, Li S, Yang Z, Widmalm G (2015) Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER. Carbohydr Res 402:87–94

    Article  CAS  Google Scholar 

  • Freitas F, Torres CA, Reis MA (2017) Engineering aspects of microbial exopolysaccharide production. Bioresour Technol 245:1674–1683

    Article  CAS  Google Scholar 

  • Gangoiti MV, Puertas AI, Hamet MF, Peruzzo PJ, Llamas MG, Medrano M, Pietro A, Dueñas MT, Abraham AG (2017) Lactobacillus plantarum CIDCA 8327: an α-glucan producing-strain isolated from kefir grains. Carbohydr Polym 170:52–59

    Article  CAS  Google Scholar 

  • Harutoshi T (2013) Exopolysaccharides of lactic acid bacteria for food and colon health applications. In: Kongo M (ed) Lactic acid bacteria-R & D for food, health and livestock purposes. InTech, Tokyo. https://doi.org/10.5772/50839. Available from: https://www.intechopen.com/books/lactic-acidbacteria-r-d-for-food-health-and-livestock-purposes/exopolysaccharides-of-lactic-acid-bacteria-for-foodand-colon-health-applications

  • Huebner J, Wehling RL, Hutkins RW (2007) Functional activity of commercial prebiotics. Int Dairy J 17(7):770–775

    Article  CAS  Google Scholar 

  • Imran MYM, Reehana N, Jayaraj KA, Ahamed AAP, Dhanasekaran D, Thajuddin N, Alharbi NS, Muralitharan G (2016) Statistical optimization of exopolysaccharide production by Lactobacillus plantarum NTMI05 and NTMI20. Int J Biol Macromol 93:731–745

    Article  CAS  Google Scholar 

  • Ismail B, Nampoothiri KM (2010) Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Arch Microbiol 192(12):1049–1057

    Article  CAS  Google Scholar 

  • Ismail B, Nampoothiri KM (2014) Molecular characterization of an exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510 and its efficacy to improve the texture of starchy food. J Food Sci Technol 51(12):4012–4018

    Article  CAS  Google Scholar 

  • Kim Y, Kim SH (2009) Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157: H7. Biochem Biophys Res Commun 379(2):324–329

    Article  CAS  Google Scholar 

  • Kim Y, Oh S, Yun HS, Kim SH (2010) Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. Lett Appl Microbiol 51(2):123–130

    CAS  PubMed  Google Scholar 

  • Kodali VP, Sen R (2008) Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnol J 3(2):245–251

    Article  CAS  Google Scholar 

  • Kruszewska D, Lan J, Lorca G, Yanagisawa N, Marklinder I, Ljungh A (2002) Selection of lactic acid bacteria as probiotic strains by in vitro tests. Microb Ecol Health Dis 29:37–49

  • Lahtinen S, Ouwehand AC, Salminen S, von Wright A (eds) (2011) Lactic acid bacteria: microbiological and functional aspects. CRC Press, New York

    Google Scholar 

  • Lamontanara A, Caggianiello G, Orrù L, Capozzi V, Michelotti V, Bayjanov JR, Renckens B, Van Hijum SAFT, Luigi C, Spano G (2015) Draft genome sequence of Lactobacillus plantarum Lp90 isolated from wine. Genome Announc 3(2):e00097–e00015

    Article  Google Scholar 

  • Lee YK, Salminen S (2009) Handbook of probiotics and prebiotics. John Wiley & Sons, New Jersey

    Google Scholar 

  • Lee IC, Caggianiello G, van Swam II, Taverne N, Meijerink M, Bron PA, Spano G, Kleerebezem M (2016) Strain-specific features of extracellular polysaccharides and their impact on Lactobacillus plantarum-host interactions. Appl Environ Microbiol 82(13):3959–3970

    Article  CAS  Google Scholar 

  • Leemhuis H, Pijning T, Dobruchowska JM, Van Leeuwen SS, Kralj S, Dijkstra BW, Dijkhuizen L (2013) Glucansucrases: three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. J Biotechnol 163(2):250–272

    Article  CAS  Google Scholar 

  • Li W, Ji J, Rui X, Yu J, Tang W, Chen X, Jiang M, Dong M (2014) Production of exopolysaccharides by Lactobacillus helveticus MB2-1 and its functional characteristics in vitro. LWT Food Sci Technol 59(2):732–739

    Article  CAS  Google Scholar 

  • Liu J, Luo J, Ye H, Sun Y, Lu Z, Zeng X (2009) Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr Polym 78(2):275–281

    Article  CAS  Google Scholar 

  • Liu CF, Tseng KC, Chiang SS, Lee BH, Hsu WH, Pan TM (2011) Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J Sci Food Agric 91(12):2284–2291

    CAS  PubMed  Google Scholar 

  • Looijesteijn PJ, Trapet L, de Vries E, Abee T, Hugenholtz J (2001) Physiological function of exopolysaccharides produced by Lactococcus lactis. Int J Food Microbiol 64(1):71–80

    Article  CAS  Google Scholar 

  • Lopez EC, Champion D, Blond G, Meste ML (2005) Influence of dextran, pullulan and gum arabic on the physical properties of frozen sucrose solutions. Carbohydr Polym 59(1):83–91

    Article  CAS  Google Scholar 

  • Oh YJ, Jung DS (2015) Evaluation of probiotic properties of Lactobacillus and Pediococcus strains isolated from Omegisool, a traditionally fermented millet alcoholic beverage in Korea. LWT Food Sci Technol 63(1):437–444

    Article  CAS  Google Scholar 

  • Ren D, Li C, Qin Y, Yin R, Du S, Ye F, Liu C, Liu H, Wang M, Li Y, Sun Y, Li X, Tian M, Jin N (2014) In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine. Anaerobe 30:1–10

    Article  CAS  Google Scholar 

  • Rendueles O, Kaplan JB, Ghigo JM (2013) Antibiofilm polysaccharides. Environ Microbiol 15(2):334–346

    Article  CAS  Google Scholar 

  • Ruas-Madiedo P, Hugenholtz J, Zoon P (2002) An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J 12(2):163–171

    Article  CAS  Google Scholar 

  • Russo P, López P, Capozzi V, De Palencia PF, Dueñas MT, Spano G, Fiocco D (2012) Beta-glucans improve growth, viability and colonization of probiotic microorganisms. Int J Mol Sci 13(5):6026–6039

    Article  CAS  Google Scholar 

  • Russo P, de Chiara MLV, Capozzi V, Arena MP, Amodio ML, Rascón A, Dueñas MT, López P, Spano G (2016) Lactobacillus plantarum strains for multifunctional oat-based foods. LWT Food Sci Technol 68:288–294

    Article  CAS  Google Scholar 

  • Ryan PM, Ross RP, Fitzgerald GF, Caplice NM, Stanton C (2015) Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food Funct 6(3):679–693

    Article  CAS  Google Scholar 

  • Salehizadeh H, Shojaosadati SA (2001) Extracellular biopolymeric flocculants recent trends and biotechnological importance. Biotechnol Adv 19:371–385

    Article  CAS  Google Scholar 

  • Salehizadeh H, Vossoughi M, Alemzadeh I (2000) Some investigations on bioflocculant producing bacteria. Biochem Eng J 5(1):39–44

    Article  CAS  Google Scholar 

  • Sasikumar K, Vaikkath DK, Devendra L, Nampoothiri KM (2017) An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods. Bioresour Technol 241:1152–1156

    Article  CAS  Google Scholar 

  • Servin AL (2004) Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 28(4):405–440

    Article  CAS  Google Scholar 

  • Shen JW, Shi CW, Xu CP (2013) Exopolysaccharides from Pleurotus pulmonarius: fermentation optimization, characterization and antioxidant activity. Food Technol Biotechnol 51(4):520

    CAS  Google Scholar 

  • Tsuda H, Miyamoto T (2010) Production of exopolysaccharide by Lactobacillus plantarum and the prebiotic activity of the exopolysaccharide. Food Sci Technol Res 16(1):87–92

    Article  CAS  Google Scholar 

  • Tsusaki K, Watanabe H, Nishimoto T, Yamamoto T, Kubota M, Chaen H, Fukuda S (2009) Structure of a novel highly branched α-glucan enzymatically produced from maltodextrin. Carbohydr Res 344(16):2151–2156

    Article  CAS  Google Scholar 

  • Van Hijum SAFT, Szalowska E, Van Der Maarel MJEC, Dijkhuizen L (2004) Biochemical and molecular characterization of a levansucrase from Lactobacillus reuteri. Microbiology 150(3):621–630

    Article  Google Scholar 

  • Van Hijum SA, Kralj S, Ozimek LK, Dijkhuizen L, Van Geel-Schutten IG (2006) Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70(1):157–176

    Article  Google Scholar 

  • Wang Y, Ahmed Z, Feng W, Li C, Song S (2008) Physicochemical properties of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir. Int J Biol Macromol 43(3):283–288

    Article  CAS  Google Scholar 

  • Wang Y, Li C, Liu P, Ahmed Z, Xiao P, Bai X (2010) Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohydr Polym 82(3):895–903

    Article  CAS  Google Scholar 

  • Wang K, Li W, Rui X, Chen X, Jiang M, Dong M (2014) Structural characterization and bioactivity of released exopolysaccharides from Lactobacillus plantarum 70810. Int J Biol Macromol 67:71–78

    Article  Google Scholar 

  • Wang J, Zhao X, Tian Z, Yang Y, Yang Z (2015a) Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet kefir. Carbohydr Polym 125:16–25

    Article  CAS  Google Scholar 

  • Wang J, Zhao X, Yang Y, Zhao A, Yang Z (2015b) Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. Int J Biol Macromol 74:119–126

    Article  CAS  Google Scholar 

  • Wang X, Shao C, Liu L, Guo X, Xu Y, Lü X (2017) Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. Int J Biol Macromol 103:1173–1184

    Article  CAS  Google Scholar 

  • Wu Z, Lu J, Wang X, Hu B, Ye H, Fan J, Abid M, Zeng X (2014) Optimization for production of exopolysaccharides with antitumor activity in vitro from Paecilomyces hepiali. Carbohydr Polym 99:226–234

    Article  CAS  Google Scholar 

  • Zannini E, Waters DM, Coffey A, Arendt EK (2016) Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl Microbiol Biotechnol 100(3):1121–1135

    Article  CAS  Google Scholar 

  • Zhang ZQ, Bo L, Xia SQ, Wang XJ, Yang AM (2007a) Production and application of a novel bioflocculant by multiple-microorganism consortia using brewery wastewater as carbon source. J Environ Sci 19(6):667–673

    Article  Google Scholar 

  • Zhang M, Cui SW, Cheung PCK, Wang Q (2007b) Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol 18(1):4–19

    Article  Google Scholar 

  • Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, Yang Z, Li S (2013) Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int J Biol Macromol 54:270–275

    Article  Google Scholar 

  • Zhang Z, Liu Z, Tao X, Wei H (2016) Characterization and sulfated modification of an exopolysaccharide from Lactobacillus plantarum ZDY2013 and its biological activities. Carbohydr Polym 153:25–33

    Article  CAS  Google Scholar 

  • Zhu X, Zhao Y, Sun Y, Gu Q (2014) Purification and characterisation of plantaricin ZJ008, a novel bacteriocin against Staphylococcus spp. from Lactobacillus plantarum ZJ008. Food Chem 165:216–223

    Article  CAS  Google Scholar 

  • Zisu B, Shah NP (2005) Textural and functional changes in low-fat Mozzarella cheeses in relation to proteolysis and microstructure as influenced by the use of fat replacers, pre-acidification and EPS starter. Int Dairy J 15(6):957–972

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES) for the granted fellowships.

Funding

This study received research grants from funding agencies (Brazilian Federal Agency for the Support and Evaluation of Graduate Education (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haíssa Roberta Cardarelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.A., Lopes Neto, J.H.P. & Cardarelli, H.R. Exopolysaccharides produced by Lactobacillus plantarum: technological properties, biological activity, and potential application in the food industry. Ann Microbiol 69, 321–328 (2019). https://doi.org/10.1007/s13213-019-01456-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-019-01456-9

Keywords

Navigation