Skip to main content
Log in

Nanocarbon-based TEMPO as stable heterogeneous catalysts for partial oxidation of alcohols

纳米碳材料固载TEMPO催化醇的选择性氧化反应

  • Article
  • Chemistry
  • Published:
Science Bulletin

Abstract

Polymerized fullerene hollow spheres bonded with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) have been successfully synthesized via amination of C60 with 4-amino-TEMPO in the presence of H2O2, and then cross-linked by 1,6-hexanediamine. The hollow spheres were analyzed by fourier transform infrared spectrometer, electron spin resonance and X-ray photoelectron spectroscopy analysis, which indicated the presence of N–O free radicals in the products. When used as a typical heterogeneous catalyst for selective oxidation of alcohols to the corresponding aldehydes or ketones, it exhibited excellent activities, selectivity and recyclability. This synthesis route is convenient and effective, and may provide a new approach to developing immobilized fullerene based heterogeneous catalysts with high activity and recyclability.

摘要

在H2O2存在下,4-氨基-TEMPO加成到C60上,经1,6-己二胺交联后,得到TEMPO功能化C60聚合物(C60-TEMPO-HDA)。透射电子显微镜和扫描电子显微镜分析显示聚合物自组装成空心球结构。红外分析、电子自旋共振和X射线光电子能谱确认了氮氧自由基的存在。在醇的选择性氧化反应中,C60-TEMPO-HDA催化剂不仅表现出高的催化活性,而且具有良好的循环稳定性,使用6次后,其活性和结构都没有明显改变。此外,这种合成方法具有一定的普适性,对4-氨基-吡啶和甘氨酸等带有氨基的有机分子也是适用的,为开发其他高效多相催化剂提供了一种新思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sheldon RA, Arends I, ten Brink GJ et al (2002) Green, catalytic oxidations of alcohols. Acc Chem Res 35:774–781

    Article  Google Scholar 

  2. ten Brink GJ, Arends I, Sheldon RA (2000) Green, catalytic oxidation of alcohols in water. Science 287:1636–1639

    Article  Google Scholar 

  3. Enache DI, Edwards JK, Landon P et al (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 311:362–365

    Article  Google Scholar 

  4. Mallat T, Baiker A (2004) Oxidation of alcohols with molecular oxygen on solid catalysts. Chem Rev 104:3037–3058

    Article  Google Scholar 

  5. Noyori R, Aoki M, Sato K (2003) Green oxidation with aqueous hydrogen peroxide. Chem Commun (16):1977–1986

  6. Sheldon RA (2015) Recent advances in green catalytic oxidations of alcohols in aqueous media. Catal Today 247:4–13

    Article  Google Scholar 

  7. Dijksman A, Marino-Gonzalez A, Payeras AMI et al (2001) Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system. J Am Chem Soc 123:6826–6833

    Article  Google Scholar 

  8. Testa ML, Ciriminna R, Hajji C et al (2004) Oxidation of amino diols mediated by homogeneous and heterogeneous TEMPO. Adv Synth Catal 346:655–660

    Article  Google Scholar 

  9. Zhao MZ, Li J, Mano E et al (1999) Oxidation of primary alcohols to carboxylic acids with sodium chlorite catalyzed by TEMPO and bleach. J Org Chem 64:2564–2566

    Article  Google Scholar 

  10. Zhang S, Miao C, Xu D et al (2014) CuI/N4 ligand/TEMPO derivatives: a mild and highly efficient system for aerobic oxidation of primary alcohols. Chin J Catal 35:1864–1873

    Article  Google Scholar 

  11. Bolm C, Fey T (1999) TEMPO oxidations with a silica-supported catalyst. Chem Commun (18):1795–1796

  12. Fey T, Fischer H, Bachmann S et al (2001) Silica-supported TEMPO catalysts: synthesis and application in the Anelli oxidation of alcohols. J Org Chem 66:8154–8159

    Article  Google Scholar 

  13. Pozzi G, Cavazzini M, Quici S et al (2004) Poly(ethylene glycol)-supported TEMPO: an efficient, recoverable metal-free catalyst for the selective oxidation of alcohols. Org Lett 6:441–443

    Article  Google Scholar 

  14. Gilhespy M, Lok M, Baucherel X (2005) Polymer-supported nitroxyl radical catalyst for selective aerobic oxidation of primary alcohols to aldehydes. Chem Commun (8):1085–1086

  15. Li L, Matsuda R, Tanaka I et al (2014) A crystalline porous coordination polymer decorated with nitroxyl radicals catalyzes aerobic oxidation of alcohols. J Am Chem Soc 136:7543–7546

    Article  Google Scholar 

  16. Miao CX, He LN, Wang JL et al (2010) Self-neutralizing in situ acidic CO2/H2O system for aerobic oxidation of alcohols catalyzed by TEMPO functionalized imidazolium salt/NaNO2. J Org Chem 75:257–260

    Article  Google Scholar 

  17. Miao CX, He LN, Wang JQ et al (2009) TEMPO and carboxylic acid functionalized imidazolium salts/sodium nitrite: an efficient, reusable, transition metal-free catalytic system for aerobic oxidation of alcohols. Adv Synth Catal 351:2209–2216

    Article  Google Scholar 

  18. Wu XE, Ma L, Ding MX et al (2005) TEMPO-derived task-specific ionic liquids for oxidation of alcohols. Synlett (4):607–610

  19. Ying H, Sun Q, Pan S et al (2015) Porous polymerized organocatalysts rationally synthesized from the corresponding vinyl-functionalized monomers as efficient heterogeneous catalysts. ACS Catal 5:1556–1559

    Article  Google Scholar 

  20. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  Google Scholar 

  21. Zhang F, Jiang H, Li X et al (2014) Amine-functionalized GO as an active and reusable acid-base bifunctional catalyst for one-pot cascade reactions. ACS Catal 4:394–401

    Article  Google Scholar 

  22. Taylor R, Walton DRM (1993) The chemistry of fullerenes. Nature 363:685–693

    Article  Google Scholar 

  23. Tzirakis MD, Orfanopoulos M (2013) Radical reactions of fullerenes: from synthetic organic chemistry to materials science and biology. Chem Rev 113:5262–5321

    Article  Google Scholar 

  24. Maggini M, Scorrano G, Prato M (1993) Addition of azomethine ylides to C60: synthesis, characterization, and functionalization of fullerene pyrrolidines. J Am Chem Soc 115:9798–9799

    Article  Google Scholar 

  25. Beejapur HA, Campisciano V, Giacalone F et al (2015) Catalytic synergism in a C60IL10TEMPO2 hybrid in the efficient oxidation of alcohols. Adv Synth Catal 357:51–58

    Article  Google Scholar 

  26. Niu F, Wu J, Zhang L et al (2011) Hydroxyl group rich C60 fullerenol: an excellent hydrogen bond catalyst with superb activity, selectivity, and stability. ACS Catal 1:1158–1161

    Article  Google Scholar 

  27. Sun YB, Cao CY, Yang SL et al (2014) C60 fullerenol as an active and stable catalyst for the synthesis of cyclic carbonates from CO2 and epoxides. Chem Commun 50:10307–10310

    Article  Google Scholar 

  28. Sun Y, Cao C, Huang P et al (2015) Amines functionalized C60 as solid base catalysts for Knoevenagel condensation with high activity and stability. RSC Adv 5:86082–86087

    Article  Google Scholar 

  29. Isobe H, Ohbayashi A, Sawamura M et al (2000) A cage with fullerene end caps. J Am Chem Soc 122:2669–2670

    Article  Google Scholar 

  30. Isobe H, Tanaka T, Nakanishi W et al (2005) Regioselective oxygenative tetraamination of [60]fullerene. Fullerene-mediated reduction of molecular oxygen by amine via ground state single electron transfer in dimethyl sulfoxide. J Org Chem 70:4826–4832

    Article  Google Scholar 

  31. Si W, Lu S, Bao M et al (2014) Cu-catalyzed C–H amination of hydrofullerenes leading to 1,4-difunctionalized fullerenes. Org Lett 16:620–623

    Article  Google Scholar 

  32. Miller GP (2006) Reactions between aliphatic amines and 60 fullerene: a review. Cs R Chim 9:952–959

    Article  Google Scholar 

  33. Hu X, Jiang Z, Jia Z et al (2007) Amination of [60]fullerene by ammonia and by primary and secondary aliphatic amines—preparation of amino[60]fullerene peroxides. Chem Eur J 13:1129–1141

    Article  Google Scholar 

  34. Matsubayashi K, Kokubo K, Tategaki H et al (2009) One-step synthesis of water-soluble fullerenols bearing nitrogen-containing substituents. Fuller Nanotub Carbon Nanostruct 17:440–456

    Article  Google Scholar 

  35. Zhang G, Hu X, Gan L et al (2011) Synthesis of fullerene multiadducts with mixed oxygen and nitrogen addends including five secondary amino groups. Tetrahedron Lett 52:5805–5807

    Article  Google Scholar 

  36. Dencheva N, Gaspar H, Filonovich S et al (2014) Fullerene-modified polyamide 6 by in situ anionic polymerization in the presence of PCBM. J Mater Sci 49:4751–4764

    Article  Google Scholar 

  37. Manolova N, Rashkov I, Beguin F et al (1993) Amphiphilic derivatives of fullerenes formed by polymer modification. J Chem Soc Chem Commun 23:1725–1727

    Article  Google Scholar 

  38. Georgakilas V, Pellarini F, Prato M et al (2002) Supramolecular self-assembled fullerene nanostructures. Proc Natl Acad Sci USA 99:5075–5080

    Article  Google Scholar 

  39. Lin Z, Lu P, Hsu CH et al (2014) Self-assembly of fullerene-based janus particles in solution: effects of molecular architecture and solvent. Chem Eur J 20:11630–11635

    Article  Google Scholar 

  40. Zhang X, Nakanishi T, Ogawa T et al (2010) Flowerlike supramolecular architectures assembled from C60 equipped with a pyridine substituent. Chem Commun 46:8752–8754

    Article  Google Scholar 

  41. Su L, Zhang Y, Zhao J (2014) Synthesis of dendritic polyamidoamine supported 2,2,6,6-tetramethylpiperidine-1-oxyl and its catalytic performance on the oxidation of alcohols with molecular oxygen as oxidant. J Mol Catal 28:400–409

    Google Scholar 

  42. Kasumov VT, Yerli Y, Topkaya R (2013) Magnetic properties of a new N-TEMPO-tert-butyl substituted salicylaldimines and their biradical palladium(II) complexes. Solid State Sci 15:95–101

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21333009, 21573245, and 21573244) and the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changyan Cao or Weiguo Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 478 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Cao, C., Wei, F. et al. Nanocarbon-based TEMPO as stable heterogeneous catalysts for partial oxidation of alcohols. Sci. Bull. 61, 772–777 (2016). https://doi.org/10.1007/s11434-016-1070-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1070-6

Keywords

Navigation