Skip to main content
Log in

Mechanocaloric materials for solid-state cooling

  • Progress
  • Materials Science
  • Published:
Science Bulletin

Abstract

This article reviews the up-to-date progress in mechanocaloric effect and materials near ambient temperature. For elastocaloric materials, we focus on directly measured temperature change and its entropy origin in non-magnetic and magnetic shape memory alloys. In terms of barocaloric materials, change in magnetic state, volume and shift of transition temperature due to hydrostatic pressure are systematically compared. We propose advantages and challenges of elastocaloric materials for solid-state cooling. Strategies to enhance elastocaloric and mechanical stability under long-term mechanical cycles are presented. Finally, we conclude with an outlook on the prospect of elastocaloric cooling application.

摘要

本文综述了室温附近变形诱发固态相变材料及其热效应的最新进展。对弹热材料而言,重点关注形状记忆合金的弹热效应及熵变来源。分别对不同特征(非磁性或磁性,一级相变或弱一级相变)的形状记忆合金体系的驱动应力、弹热温变和工作温度窗口进行了对比分析。对具有压热效应的巨磁热材料,系统对比了等静压力作用下磁状态、体积和相变温度的变化。基于等静压力和磁场驱动相变温度移动方向相反的特点,可以设计复合驱动场来精确调控材料的滞后。评述了弹热制冷的优势、挑战和应对策略。其优势为温变大、温区宽、变形方式多样和成本低;最主要的挑战在于大应变和高速率条件下的循环疲劳问题;基于成分设计的滞后控制、机械稳定性训练是提高材料抗疲劳性能的有效手段。最后,基于欧洲和美国在弹热制冷原型机和系统制冷效率优化设计的最新进展,对固态制冷技术的应用前景进行了展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Faehler S, Roessler UK, Kastner O et al (2012) Caloric effects in ferroic materials: new concepts for cooling. Adv Eng Mater 14:10–19

    Article  Google Scholar 

  2. Manosa L, Planes A, Acet M (2013) Advanced materials for solid-state refrigeration. J Mater Chem A 1:4925–4936

    Article  Google Scholar 

  3. Moya X, Kar-Narayan S, Mathur ND (2014) Caloric materials near ferroic phase transitions. Nat Mater 13:439–450

    Article  Google Scholar 

  4. Pecharsky VK, Gschneidner KA (1997) Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett 78:4494–4497

    Article  Google Scholar 

  5. Bonnot E, Romero R, Manosa L et al (2008) Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys Rev Lett 100:125901

    Article  Google Scholar 

  6. Manosa L, Gonzalez-Alonso D, Planes A et al (2010) Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nat Mater 9:478–481

    Article  Google Scholar 

  7. Annaorazov MP, Nikitin SA, Tyurin AL et al (1996) Anomalously high entropy change in FeRh alloy. J Appl Phys 79:1689–1695

    Article  Google Scholar 

  8. Crossley S, Mathur ND, Moya X (2015) New developments in caloric materials for cooling applications. AIP Adv 5:067153

    Article  Google Scholar 

  9. Chauhan A, Patel S, Vaish R (2015) Elastocaloric effect in ferroelectric ceramics. Appl Phys Lett 106:172901

    Article  Google Scholar 

  10. Guyomar D, Li Y, Sebald G et al (2013) Elastocaloric modeling of natural rubber. Appl Therm Eng 57:33–38

    Article  Google Scholar 

  11. Manosa L, Jarque-Farnos S, Vives E et al (2013) Large temperature span and giant refrigerant capacity in elastocaloric Cu–Zn–Al shape memory alloys. Appl Phys Lett 103:211904

    Article  Google Scholar 

  12. Cui J, Wu Y, Muehlbauer J et al (2012) Demonstration of high efficiency elastocaloric cooling with large delta T using NiTi wires. Appl Phys Lett 101:073904

    Article  Google Scholar 

  13. Ossmer H, Lambrecht F, Gueltig M et al (2014) Evolution of temperature profiles in TiNi films for elastocaloric cooling. Acta Mater 81:9–20

    Article  Google Scholar 

  14. Schmidt M, Schütze A, Seelecke S (2015) Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. Int J Refrig Rev Int Froid 54:88–97

    Article  Google Scholar 

  15. Bechtold C, Chluba C, De Miranda RL et al (2012) High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films. Appl Phys Lett 101:091903

    Article  Google Scholar 

  16. Ossmer H, Chluba C, Gueltig M et al (2015) Local evolution of the elastocaloric effect in TiNi-based films. Shape Mem Superelast. doi:10.1007/s40830-015-0014-3

    Google Scholar 

  17. Lu BF, Xiao F, Yan AR et al (2014) Elastocaloric effect in a textured polycrystalline Ni–Mn–In–Co metamagnetic shape memory alloy. Appl Phys Lett 105:161905

    Article  Google Scholar 

  18. Huang YJ, Hu QD, Bruno NM et al (2015) Giant elastocaloric effect in directionally solidified Ni–Mn–In magnetic shape memory alloy. Scr Mater 105:42–45

    Article  Google Scholar 

  19. Xiao F, Jin M, Liu J et al (2015) Elastocaloric effect in Ni50Fe19Ga27Co4 single crystals. Acta Mater 96:292–300

    Article  Google Scholar 

  20. Xu Y, Lu BF, Sun W et al (2015) Large and reversible elastocaloric effect in dual-phase Ni54Fe19Ga27 superelastic alloys. Appl Phys Lett 106:201903

    Article  Google Scholar 

  21. Xiao F, Fukuda T, Kakeshita T (2013) Significant elastocaloric effect in a Fe-31.2Pd (at%) single crystal. Appl Phys Lett 102:161914

    Article  Google Scholar 

  22. Tusek J, Engelbrecht K, Mikkelsen LP et al (2015) Elastocaloric effect of Ni–Ti wire for application in a cooling device. J Appl Phys 117:124901

    Article  Google Scholar 

  23. Tušek J, Engelbrecht K, Millán-Solsona R et al (2015) The elastocaloric effect: a way to cool efficiently. Adv Energy Mater 5:1500361

    Google Scholar 

  24. Kihara T, Xu X, Ito W et al (2014) Direct measurements of inverse magnetocaloric effects in metamagnetic shape-memory alloy NiCoMnIn. Phys Rev B 90:214409

    Article  Google Scholar 

  25. Soto-Parra DE, Vives E, Gonzalez-Alonso D et al (2010) Stress- and magnetic field-induced entropy changes in Fe-doped Ni–Mn–Ga shape-memory alloys. Appl Phys Lett 96:071912

    Article  Google Scholar 

  26. Castillo-Villa PO, Soto-Parra DE, Matutes-Aquino JA et al (2011) Caloric effects induced by magnetic and mechanical fields in a Ni50Mn25−x Ga25Co x magnetic shape memory alloy. Phys Rev B 83:174109

    Article  Google Scholar 

  27. Millan-Solsona R, Stern-Taulats E, Vives E et al (2014) Large entropy change associated with the elastocaloric effect in polycrystalline Ni–Mn–Sb–Co magnetic shape memory alloys. Appl Phys Lett 105:241901

    Article  Google Scholar 

  28. Xiao F, Fukuda T, Kakeshita T et al (2015) Elastocaloric effect by a weak first-order transformation associated with lattice softening in an Fe-31.2Pd (at%) alloy. Acta Mater 87:8–14

    Article  Google Scholar 

  29. Strassle T, Furrer A (2000) Cooling by adiabatic (de)pressurization—the barocaloric effect. High Press Res 17:325–333

    Article  Google Scholar 

  30. Strassle T, Furrer A, Hossain Z et al (2003) Magnetic cooling by the application of external pressure in rare-earth compounds. Phys Rev B 67:054407

    Article  Google Scholar 

  31. de Oliveira NA (2007) Entropy change upon magnetic field and pressure variations. Appl Phys Lett 90:052501

    Article  Google Scholar 

  32. de Medeiros LG, de Oliveira NA, Troper A (2008) Barocaloric and magnetocaloric effects in La(Fe0.89Si0.11)13. J Appl Phys 103:113909

    Article  Google Scholar 

  33. de Medeiros LG, de Oliveira NA, Troper A (2010) Magnetocaloric and barocaloric effects in Mn(As0.7Sb0.3). J Magn Magn Mater 322:1558–1560

    Article  Google Scholar 

  34. Manosa L, Gonzalez-Alonso D, Planes A et al (2011) Inverse barocaloric effect in the giant magnetocaloric La–Fe–Si–Co compound. Nat Commun 2:595

    Article  Google Scholar 

  35. Yuce S, Barrio M, Emre B et al (2012) Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2. Appl Phys Lett 101:071906

    Article  Google Scholar 

  36. Stern-Taulats E, Planes A, Lloveras P et al (2014) Barocaloric and magnetocaloric effects in Fe49Rh51. Phys Rev B 89:214105

    Article  Google Scholar 

  37. Matsunami D, Fujita A, Takenaka K et al (2015) Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. Nat Mater 14:73–78

    Article  Google Scholar 

  38. Strassle T, Furrer A, Lacorre P et al (2000) A novel principle for cooling by adiabatic pressure application in rare-earth compounds. J Alloy Compd 303:228–231

    Article  Google Scholar 

  39. Song Y, Chen X, Dabade V et al (2013) Enhanced reversibility and unusual microstructure of a phase-transforming material. Nature 502:85–88

    Article  Google Scholar 

  40. Chluba C, Ge WW, de Miranda RL et al (2015) Ultralow-fatigue shape memory alloy films. Science 348:1004–1007

    Article  Google Scholar 

  41. Qian S, Ling J, Hwang Y et al (2015) Thermodynamics cycle analysis and numerical modeling of thermoelastic cooling systems. Int J Refrig Rev Int Froid 56:65–80

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51371184) and Zhejiang Provincial Natural Science Foundation (LR14E010001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, B., Liu, J. Mechanocaloric materials for solid-state cooling. Sci. Bull. 60, 1638–1643 (2015). https://doi.org/10.1007/s11434-015-0898-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0898-5

Keywords

Navigation