Skip to main content
Log in

Primary estimation of Chinese terrestrial carbon sequestration during 2001–2010

  • Article
  • Earth Sciences
  • Published:
Science Bulletin

Abstract

Quantifying the carbon budgets of terrestrial ecosystems is the foundation on which to understand the role of these ecosystems as carbon sinks and to mitigate global climate change. Through a re-examination of the conceptual framework of ecosystem productivity and the integration of multi-source data, we assumed that the entire terrestrial ecosystems in China to be a large-scale regional biome-society system. We approximated the carbon fluxes of key natural and anthropogenic processes at a regional scale, including fluxes of emissions from reactive carbon and creature ingestion, and fluxes of emissions from anthropogenic and natural disturbances. The gross primary productivity, ecosystem respiration and net ecosystem productivity (NEP) in China were 7.78, 5.89 and 1.89 PgC a−1, respectively, during the period from 2001 to 2010. After accounting for the consumption of reactive carbon and creature ingestion (0.078 PgC a−1), fires (0.002 PgC a−1), water erosion (0.038 PgC a−1) and agricultural and forestry utilization (0.806 PgC a−1), the final carbon sink in China was about 0.966 PgC a−1; this was considered as the climate-based potential terrestrial ecosystem carbon sink for the current climate conditions in China. The carbon emissions caused by anthropogenic disturbances accounted for more than 42 % of the NEP, which indicated that humans can play an important role in increasing terrestrial carbon sequestration and mitigating global climate change. This role can be fulfilled by reducing the carbon emissions caused by human activities and by prolonging the residence time of fixed organic carbon in the large-scale regional biome-society system through the improvement of ecosystem management.

摘要

在重新审视生态系统生产力概念体系的基础上, 将中国的陆地区域假设为一个大尺度的生物-社会群区生态系统, 采用不同时空尺度多源数据的整合分析方法, 定量评估了中国区域陆地生态系统生产力及其在各种生态过程中的分配和消耗量, 进而分析评价了中国区域陆地生态系统潜在的碳源/汇强度. 统计分析结果表明中国区域的陆地生态系统具有较高的碳吸收能力, 其研究结果可以为中国区域陆地碳收支现状和增汇潜力的评估分析提供参考信息, 也可作为中国区域碳管理决策分析的重要依据.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Tans PP, Fung IY, Takahashi T (1990) Observational contrains on the global atmospheric CO2 budget. Science 247:1431–1438

    Article  Google Scholar 

  2. Schimel DS, House JI, Hibbard KA et al (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172

    Article  Google Scholar 

  3. Ballantyne AP, Alden CB, Miller JB et al (2012) Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488:70–72

    Article  Google Scholar 

  4. Solon SD, Qin M, Manning Z et al (eds) (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 2007. Cambridge University Press, Cambridge

    Google Scholar 

  5. Chapin FS, Woodwell GM, Randerson JT et al (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050

    Article  Google Scholar 

  6. Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35:313–347

    Article  Google Scholar 

  7. Le Quéré C, Andres RJ, Boden T et al (2013) The global carbon budget 1959–2011. Earth Syst Sci Data 5:165–185

    Article  Google Scholar 

  8. Yu GR, Wang QF, Liu YC et al (2011) Conceptual framework of carbon sequestration rate and potential increment of carbon sink of regional terrestrial ecosystem and scientific basis for quantitative carbon authentification. Prog Geogr 30:771–787 (in Chinese)

    Google Scholar 

  9. Lovett G, Cole J, Pace M (2006) Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystems 9:152–155

    Article  Google Scholar 

  10. Yu GR, Wang QF, Zhu XJ (2011) Methods and uncertainties in evaluating the carbon budgets of regional terrestrial ecosystems. Prog Geogr 30:103–113 (in Chinese)

    Google Scholar 

  11. Yu GR, Sun XM (2006) Principles of flux measurement in terrestrial ecosystems. Higher Education Press, Beijing (in Chinese)

    Google Scholar 

  12. Fang JY, Chen AP, Peng CH et al (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292:2320–2322

    Article  Google Scholar 

  13. Fang JY, Guo ZD, Piao SL et al (2007) Terrestrial vegetation carbon sinks in China, 1981–2000. Sci China Ser D: Earth Sci 50:1341–1350

  14. Junttila V, Maltamo M, Kauranne T (2008) Sparse bayesian estimation of forest stand characteristics from airborne laser scanning. Forest Sci 54:543–552

    Google Scholar 

  15. Piao SL, Fang JY, Zhou LM et al (2005) Changes in vegetation net primary productivity from 1982 to 1999 in China. Glob Biogeochem Cycle 19:GB2027. doi:10.1029/2004GB002274

  16. Guerlet S, Basu S, Butz A et al (2013) Reduced carbon uptake during the 2010 northern hemisphere summer from gosat. Geophys Res Lett 40:2378–2383

    Article  Google Scholar 

  17. Basu S, Krol M, Butz A et al (2014) The seasonal variation of the CO2 flux over tropical Asia estimated from GOSAT, CONTRAIL, and IASI. Geophys Res Lett 41:1809–1815

    Article  Google Scholar 

  18. Yu GR, Zheng ZM, Wang QF et al (2010) Spatiotemporal pattern of soil respiration of terrestrial ecosystems in China: the development of a geostatistical model and its simulation. Environ Sci Technol 44:6074–6080

    Article  Google Scholar 

  19. Zhu XJ, Yu GR, He HL et al (2014) Geographical statistical assessments of carbon fluxes in terrestrial ecosystems of China: results from upscaling network observations. Glob Planet Change 118:52–61

    Article  Google Scholar 

  20. Piao SL, Ciais P, Lomas M et al (2011) Contribution of climate change and rising CO2 to terrestrial carbon balance in East Asia: a multi-model analysis. Glob Planet Change 75:133–142

    Article  Google Scholar 

  21. Huang Y, Yu YQ, Zhang W et al (2009) Agro-C: a biogeophysical model for simulating the carbon budget of agroecosystems. Agric For Meteorol 149:106–129

    Article  Google Scholar 

  22. Tao B, Cao MK, Li KR et al (2007) Spatial patterns of terrestrial net ecosystem productivity in China during 1981–2000. Sci China Ser D: Earth Sci 50:745–753

  23. Deng F, Chen JM (2011) Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses. Biogeosciences 8:3263–3281

    Article  Google Scholar 

  24. Zhang HF, Chen BZ, van der Laan-Luijkx IT et al (2014) Net terrestrial CO2 exchange over China during 2001–2010 estimated with an ensemble data assimilation system for atmospheric CO2. J Geophys Res 119:3500–3515

    Google Scholar 

  25. Piao SL, Fang JY, Ciais P et al (2009) The carbon balance of terrestrial ecosystems in China. Nature 458:1009–1013

    Article  Google Scholar 

  26. Yu GR, Chen Z, Piao SL et al (2014) High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc Natl Acad Sci USA 111:4910–4915

    Article  Google Scholar 

  27. Ito A (2011) A historical meta-analysis of global terrestrial net primary productivity: are estimates converging? Glob Change Biol 17:3161–3175

    Article  Google Scholar 

  28. Jung M, Reichstein M, Margolis HA et al (2011) Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res 116:G00J07. doi:10.1029/2010JG001566

  29. Houghton RA (2003) Why are estimates of the terrestrial carbon balance so different? Glob Change Biol 9:500–509

    Article  Google Scholar 

  30. Pan YD, Birdsey RA, Fang JY et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  Google Scholar 

  31. Steffen W, Canadell J, Apps M et al (1998) The terrestrial carbon cycle: implications for the Kyoto protocol. Science 280:1393–1394

    Article  Google Scholar 

  32. Guenther A (2002) The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems. Chemosphere 49:837–844

    Article  Google Scholar 

  33. Yu GR, Zhu XJ, Fu YL et al (2013) Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob Change Biol 19:798–810

    Article  Google Scholar 

  34. Chapin FS, Matson PA, Vitousek PM (2012) Principles of terrestrial ecosystem ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  35. DeLucia EH, Drake JE, Thomas RB et al (2007) Forest carbon use efficiency: is respiration a constant fraction of gross primary production? Glob Change Biol 13:1157–1167

    Article  Google Scholar 

  36. Zhang YJ, Xu M, Chen H et al (2009) Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Glob Ecol Biogeogr 18:280–290

    Article  Google Scholar 

  37. Zhang YJ, Yu GR, Yang J et al (2014) Climate-driven global changes in carbon use efficiency. Glob Ecol Biogeogr 23:144–155

    Article  Google Scholar 

  38. Su H, Zhao J, You D et al (2004) Evaluation of economic losses caused by forest pests disasters in China. For Pest Dis 23:1–6

    Google Scholar 

  39. Fu C, Fang HJ, Yu GR (2011) Carbon emissions from forest vegetation caused by three major disturbances in China. J Resour Ecol 2:202–209

    Google Scholar 

  40. Zhu XJ, Wang QF, Zheng H et al (2014) Research on the spatiotemporal variation of carbon consumption by agricultural and forestry utilization in Chinese terrestrial ecosystems during 2000s. Quat Sci 34:762–768 (in Chinese)

    Google Scholar 

  41. Lun F, Li WH, Wang Z et al (2012) Spatio-temporal changing analysis on carbon storage of harvested wood products in China. Acta Ecol Sin 32:2918–2928 (in Chinese)

    Article  Google Scholar 

  42. Zhu XJ, Yu GR, Gao YN et al (2012) Fluxes of particulate carbon from rivers to the ocean and their changing tendency in China. Prog Geogr 31:118–122 (in Chinese)

    Google Scholar 

  43. Zhang YL (2008) The response of transport characteristics of riverine organic carbon to regional climate. Earth Environ 36:348–355 (in Chinese)

    Google Scholar 

  44. Li D (2009) The study on the hydro-chemical characteristics and the flux to the sea about the rivers in the east of China. Doctoral Dissertation, East China Normal University (in Chinese)

  45. Jiao SL, Gao QZ, Liu K (2009) Riverine DIC and its δ13CDIC of the Xijiang and the Beijiang tributaries in the Pearl River Basin, south China. Acta Sci Nat Univ Sunyatseni 48:99–105 (in Chinese)

  46. Hutchinson MF (1995) Interpolating mean rainfall using thin plate smoothing splines. Int J Geogr Inform Syst 9:385–403

  47. Hutchinson MF (2002) Anusplin version 4.2 user guide

  48. Editorial Committee of Vegetation Map of China (2007) Vegetation map of the People’s Republic of China (1:1,000,000)

  49. Huang Y, Sass RL, Fisher JFM (1998) A semi-empirical model of methane emission from flooded rice paddy soils. Glob Change Biol 4:247–268

    Article  Google Scholar 

  50. Huang Y, Zhang W, Zheng X et al (2006) Estimates of methane emissions from Chinese rice paddies by linking a model to GIS database. Acta Ecol Sin 26:980–987 (in Chinese)

    Article  Google Scholar 

  51. Huang Y, Sass RL, Fisher FM (1998) Model estimates of methane emission from irrigated rice cultivation of China. Glob Change Biol 4:809–821

    Article  Google Scholar 

  52. Xie M, Wang TJ (2007) Modeling of CH4 emission from rice paddies and CO emission from biomass burning and their effects on tropospheric oxidizing capacity in China. Acta Ecol Sin 27:4803–4814 (in Chinese)

    Article  Google Scholar 

  53. Wang P, Wei L, Du XL et al (2008) Simulating changes of methane emission from rice paddies of China, 1990–2000. Geo-inf Sci 10:573–577 (in Chinese)

    Google Scholar 

  54. Kai FM, Tyler SC, Randerson JT (2010) Modeling methane emissions from rice agriculture in China during 1961–2007. J Integr Environ Sci 7:49–60

    Article  Google Scholar 

  55. Li C, Qiu J, Frolking S et al (2002) Reduced methane emissions from large–scale changes in water management of China’s rice paddies during 1980–2000. Geophys Res Lett 29:1972

    Article  Google Scholar 

  56. Kang GD, Cai ZC, Zhang ZH et al (2004) Estimate of methane emissions from rice fields in China by climate-based net primary productivity. Chin Geogr Sci 14:326–331

    Article  Google Scholar 

  57. Verburg PH, Van Der Gon HACD (2001) Spatial and temporal dynamics of methane emissions from agricultural sources in China. Glob Change Biol 7:31–47

    Article  Google Scholar 

  58. Yan X, Akiyama H, Yagi K et al (2009) Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 intergovernmental panel on climate change guidelines. Glob Biogeochem Cycle 23:GB2002. doi:10.1029/2008GB003299

  59. Cai ZC (1997) A category for estimate of CH4 emission from rice paddy fields in China. Nutr Cycle Agroecosyst 49:171–179

    Article  Google Scholar 

  60. Li J, Wang M, Huang Y et al (2002) New estimates of methane emissions from Chinese rice paddies. Nutr Cycle Agroecosyst 64:33–42

    Article  Google Scholar 

  61. Chen H, Zhu QA, Peng C et al (2013) Methane emissions from rice paddies natural wetlands, lakes in China: synthesis new estimate. Glob Change Biol 19:19–32

    Article  Google Scholar 

  62. Yan X, Cai Z, Ohara T et al (2003) Methane emission from rice fields in mainland China: amount and seasonal and spatial distribution. J Geophys Res 108:4505

    Article  Google Scholar 

  63. Keppler F, Hamilton JTG, Braß M et al (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  Google Scholar 

  64. Xie M, Li S, Jiang F et al (2009) Methane emissions from terrestrial plants over China and their effects on methane concentrations in lower troposphere. Chin Sci Bull 54:304–310

    Article  Google Scholar 

  65. Guenther A, Geron C, Pierce T et al (2000) Natural emissions of non-methane volatile organic compounds; carbon monoxide, and oxides of nitrogen from north America. Atmos Environ 34:2205–2230

    Article  Google Scholar 

  66. Guenther A, Hewitt CN, Erickson D et al (1995) A global-model of natural volatile organic–compound emissions. J Geophys Res 100:8873–8892

    Article  Google Scholar 

  67. Xie M, Wang TJ, Jiang F et al (2007) Modeling of natural NOx and VOC emissions and their effects on tropospheric photochemistry in China. Environ Sci 28:32–40 (in Chinese)

    Google Scholar 

  68. Yan Y, Wang ZH, Bai YH et al (2005) Establishment of vegetation VOC emission inventory in China. China Environ Sci 25:110–114 (in Chinese)

    Google Scholar 

  69. Huang Y, Zhang W, Zheng X et al (2006) Estimates of methane emissions from Chinese rice paddies by linking a model to GIS database. Acta Ecol Sin 26:980–987 (in Chinese)

    Article  Google Scholar 

  70. Schultz MG, Heil A, Hoelzemann JJ et al (2008) Global wildland fire emissions from 1960 to 2000. Glob Biogeochem Cycle 22:GB2002. doi:10.1029/2007GB003031

  71. Ito A, Penner JE (2004) Global estimates of biomass burning emissions based on satellite imagery for the year 2000. J Geophys Res 109:D14S05. doi:10.1029/2003JD004423

  72. van der Werf GR, Dempewolf J, Trigg SN et al (2008) Climate regulation of fire emissions and deforestation in equatorial Asia. Proc Natl Acad Sci USA 105:20350–20355

    Article  Google Scholar 

  73. Lü A, Tian H, Liu M et al (2006) Spatial and temporal patterns of carbon emissions from forest fires in China from 1950 to 2000. J Geophys Res 111:D05313. doi:10.1029/2005JD006198

    Google Scholar 

  74. Tian XR, Shu LF, Wang MY (2003) Direct carbon emissions from Chinese forest fires, 1991–2000. Fire Safety Sci 12:6–10 (in Chinese)

    Google Scholar 

  75. Tian X, Gao C, Shu L et al (2004) Estimation of direct carbon emissions from Chinese forest fires. Chin Forest Sci Technol 3:87–92

    Google Scholar 

  76. Raymond PA, Hartmann J, Lauerwald R et al (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359

    Article  Google Scholar 

  77. Fang JY, Liu GH, Xu SL (1996) Carbon cycle and its global importance of Chinese terrestrial ecoststems. In: Wang GC, Wen YP (eds) Concentration and emission monitoring of greenhouse gases and related processes. China Environmental Science Press, Beijing, pp 109–128 (in Chinese)

    Google Scholar 

  78. Gao YN, Yu GR, Zhang L et al (2012) The changes of net primary productivity in Chinese terrestrial ecosystem: based on process and parameter models. Prog Geogr 31:109–117 (in Chinese)

    Google Scholar 

  79. Tian HQ, Melillo J, Lu CQ et al (2011) China’s terrestrial carbon balance: contributions from multiple global change factors. Glob Biogeochem Cycle 25:GB1007. doi:10.1029/2010GB003838

  80. Ehman JL, Schmid HP, Grimmond CSB et al (2002) An initial intercomparison of micrometeorological and ecological inventory estimates of carbon exchange in a mid-latitude deciduous forest. Glob Change Biol 8:575–589

    Article  Google Scholar 

  81. Gough CM, Vogel CS, Schmid HP et al (2008) Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agric For Meteorol 148:158–170

    Article  Google Scholar 

  82. Peichl M, Brodeur JJ, Khomik M et al (2010) Biometric and eddy-covariance based estimates of carbon fluxes in an age-sequence of temperate pine forests. Agric For Meteorol 150:952–965

    Article  Google Scholar 

  83. Jiang F, Wang H, Chen JM et al (2013) Nested atmospheric inversion for the terrestrial carbon sources and sinks in China. Biogeosciences 10:5311–5324

    Article  Google Scholar 

  84. Zhang CH, Ju WM, Chen JM et al (2013) China’s forest biomass carbon sink based on seven inventories from 1973 to 2008. Clim Change 118:933–948

    Article  Google Scholar 

  85. Yu GR, He NP, Wang QF (2013) Carbon budget and carbon sink of ecosystems in China: theoretical basis and comprehensive assessment. Science Press, Beijing (in Chinese)

    Google Scholar 

  86. Li XL, Liang SL, Yu GR et al (2013) Estimation of gross primary production over the terrestrial ecosystems in China. Ecol Model 261–262:80–92

    Article  Google Scholar 

  87. Liu YB, Ju WM, He HL et al (2013) Changes of net primary productivity in China during recent 11 years detected using an ecological model driven by modis data. Front Earth Sci 7:112–127

    Article  Google Scholar 

  88. Gao ZQ, Liu JY (2008) Simulation study of China’s net primary production. Chin Sci Bull 53:434–443

    Article  Google Scholar 

  89. Niu Z, Wang CY (2008) Fundamentals of remote sensing and application of carbon cycle. Science Press, Beijing (in Chinese)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Basic Research Program of China (2010CB833504) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050601, XDA05050702).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guirui Yu.

Additional information

SPECIAL TOPIC: Land-ocean integrated research and development of carbon sink

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zheng, H., Zhu, X. et al. Primary estimation of Chinese terrestrial carbon sequestration during 2001–2010. Sci. Bull. 60, 577–590 (2015). https://doi.org/10.1007/s11434-015-0736-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0736-9

Keywords

Navigation