Skip to main content

Advertisement

Log in

Extreme Learning Machine Combining Hidden-Layer Feature Weighting and Batch Training for Classification

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Based on the network structure and training methods of extreme learning machines, extreme learning machine combining hidden-layer feature weighting and batch training (ELM-WB) is proposed to make full use of representation-level features for object images and human action videos classification. To solve the problem of insufficient fusion of multiple representation-level features in most classification methods, a double hidden layer structure in which the input layer and the second hidden layer are directly connected is designed. A loop training method of weighting coefficients and output weights is proposed based on the advantages of this structure. The proposed network structure and training method are combined to construct an extreme learning machine combining hidden-layer feature weighting (ELM-W), which can effectively fuse representation-level features to enhance the classification ability of representation-level features. On this basis, the principle of online sequential ELM (OS-ELM) is introduced to update the loop training formula of the two weights to reduce the memory consumption during the operation of the overall algorithm. ELM-WB is proposed by combining the loop training formula of two weight matrices with batch training. In order to test the feasibility of ELM-WB, experiments are conducted on Caltech 101, MSRC, UCF11 and UCF101 databases. Experimental results prove that the proposed ELM-WB can improve classification accuracy by fusing representation-level features. At the same time, ELM-WB can be used to perform classification tasks on databases of any size in a general-purpose computer without specific hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The Caltech 101 [34], MSRC [35], UCF11 [36] and UCF101 [27] databases that are used to support the findings of this study could be found freely here: https://data.caltech.edu/records/mzrjq-6wc02https://www.microsoft.com/en-us/download/details.aspx?id=52644https://www.crcv.ucf.edu/data/UCF_YouTube_Action.php and https://www.crcv.ucf.edu/data/UCF101.php, respectively.

References

  1. Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: IEEE International Joint Conference on Neural Networks, Budapest, Hungary, pp 985–990. https://doi.org/10.1109/IJCNN.2004.1380068.

  2. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1/3):489–501. https://doi.org/10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  3. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern 42(2):513–529. https://doi.org/10.1109/TSMCB.2011.2168604

    Article  Google Scholar 

  4. Deng WY, Ong YS, Zheng QH (2016) A fast reduced kernel extreme learning machine. Neural Netw 76:29–38

    Article  MATH  Google Scholar 

  5. Albtoush A, Fernández-Delgado M, Cernadas E, Barro S (2022) Quick extreme learning machine for large-scale classification. Neural Comput Appl 34(8):5923–5938. https://doi.org/10.1007/s00521-021-06727-8

    Article  Google Scholar 

  6. Preeti BR, Dagar A et al (2021) A novel online sequential extreme learning machine with L2,1-norm regularization for prediction problems. Appl Intell 51(3):1669–1689. https://doi.org/10.1007/s10489-020-01890-2

    Article  Google Scholar 

  7. Zhang Z, Cai Y, Gong W (2023) Semi-supervised learning with graph convolutional extreme learning machines. Expert Syst Appl 213:119164

    Article  Google Scholar 

  8. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA, pp 2169–2178. https://doi.org/10.1109/CVPR.2006.68.

  9. Jégou H, Douze M, Schmid C, Pérez P (2010) Aggregating local descriptors into a compact image representation. In: Computer Vision and Pattern Recognition. CVPR. pp 3304–3311

  10. Sánchez J, Perronnin F, Mensink T, Verbeek J (2013) Image classification with the fisher vector: theory and practice. Int J Comput Vis 105(3):222–245

    Article  MathSciNet  MATH  Google Scholar 

  11. Xing HJ, Wang XM (2013) Training extreme learning machine via regularized correntropy criterion. Neural Comput Appl 23(7–8):1977–1986. https://doi.org/10.1007/s00521-012-1184-y

    Article  Google Scholar 

  12. Chen L, Paul H, Qu H et al (2018) Correntropy-based robust multilayer extreme learning machines. Pattern Recogn 84:357–370

    Article  Google Scholar 

  13. Chen M, Li Y, Luo X et al (2018) A novel human activity recognition scheme for smart health using multilayer extreme learning machine. IEEE Internet Things J 6(2):1410–1418

    Article  Google Scholar 

  14. Vong CM, Du J, Wong CM et al (2018) Postboosting using extended G-mean for online sequential multiclass imbalance learning. IEEE Trans Neural Netw Learn Syst 29(12):6163–6177

    Article  Google Scholar 

  15. Du J, Vong CM (2019) Robust online multilabel learning under dynamic changes in data distribution with labels. IEEE Trans Cybern 50(1):374–385

    Article  Google Scholar 

  16. Chen C, Gan Y, Vong CM (2020) Extreme semi-supervised learning for multiclass classification. Neurocomputing 376:103–118

    Article  Google Scholar 

  17. Wang C, Peng G, De Baets B (2022) Embedding metric learning into an extreme learning machine for scene recognition. Expert Syst Appl 203:117505

    Article  Google Scholar 

  18. Wu Q, Fu YL, Cui DS, Wang E (2023) C-loss-based doubly regularized extreme learning machine. Cognit Comput 15(2):496–519

    Article  Google Scholar 

  19. Kasun LLC, Zhou H, Huang GB, Vong CM (2013) Representational learning with extreme learning machine for big data. IEEE Intell Syst 28(6):31–34

    Google Scholar 

  20. Chen C, Vong CM, Wong CM et al (2018) Efficient extreme learning machine via very sparse random projection. Soft Comput 22:3563–3574

    Article  MATH  Google Scholar 

  21. Deeb H, Sarangi A, Mishra D et al (2022) Human facial emotion recognition using improved black hole based extreme learning machine. Multimed Tools Appl 81(17):24529–24552

    Article  Google Scholar 

  22. Zha L, Ma K, Li G et al (2022) An improved extreme learning machine with self-recurrent hidden layer. Adv Eng Inform 54:101736

    Article  Google Scholar 

  23. Peng X, Li H, Yuan F et al (2022) An extreme learning machine for unsupervised online anomaly detection in multivariate time series. Neurocomputing 501:596–608

    Article  Google Scholar 

  24. Zhou X, Huang J, Lu F et al (2023) A novel compound fault-tolerant method based on online sequential extreme learning machine with cycle reservoir for turbofan engine direct thrust control. Aerosp Sci Technol 132:108059

    Article  Google Scholar 

  25. Shi M, Ding C, Que H et al (2023) Multilayer-graph-embedded extreme learning machine for performance degradation prognosis of bearing. Measurement 207:112299

    Article  Google Scholar 

  26. Ghalyan IF (2023) Capacitive empirical risk function-based bag-of-words and pattern classification processes. Pattern Recogn 139:109482

    Article  Google Scholar 

  27. Zou J, Li W, Chen C, Du Q (2016) Scene classification using local and global features with collaborative representation fusion. Inf Sci 348:209–226

    Article  MathSciNet  Google Scholar 

  28. Xiong W, Zhang L, Du B, Tao D (2017) Combining local and global: rich and robust feature pooling for visual recognition. Pattern Recogn 62:225–235

    Article  Google Scholar 

  29. Ahmed KT, Irtaza A, Iqbal MA (2017) Fusion of local and global features for effective image extraction. Appl Intell 47(2):526–543

    Article  Google Scholar 

  30. Mansourian L, Abdullah MT, Abdullah LN, Azman A, Mustaffa MR (2018) An effective fusion model for image retrieval. Multimed Tools Appl 77(13):16131–16154

    Article  Google Scholar 

  31. Shekhar S, Patel VM, Nasrabadi NM et al (2014) Joint sparse representation for robust multimodal biometrics recognition. IEEE Trans Pattern Anal Mach Intell 36(1):113–126

    Article  Google Scholar 

  32. Yan J, Zheng W, Xu Q et al (2016) Sparse kernel reduced-rank regression for bimodal emotion recognition from facial expression and speech. IEEE Trans Multimed 18(7):1319–1329

    Article  Google Scholar 

  33. Bai S, Bai X (2016) Sparse contextual activation for efficient visual re-ranking. IEEE Trans Image Process 25(3):1056–1069

    Article  MathSciNet  MATH  Google Scholar 

  34. Pan PZ, Huang CL, Technology S et al (2016) Human action recognition based on dense trajectories analysis and random forest. J Electr Sci Technol 14(4):370–376

    Google Scholar 

  35. Xu W, Miao Z, Tian Y (2016) A novel mid-level distinctive feature learning for action recognition via diffusion map. Neurocomputing 218(19):185–196

    Article  Google Scholar 

  36. Giveki D (2021) Scale-space multi-view bag of words for scene categorization. Multimed Tools Appl 80:1223–1245

    Article  Google Scholar 

  37. Li FF, Fergus R, Perona P (2007) Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. Comput Vis Image Underst 106(1):59–70

    Article  Google Scholar 

  38. Wu C, Li YQ, Zhao ZB, Liu B (2019) Image classification method rationally utilizing spatial information of the image. Multimed Tools Appl 78:19181–19199

    Article  Google Scholar 

  39. Liu J, Luo J, Shah M (2009) Recognizing realistic actions from videos “in the wild”. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, pp 1996–2003. https://doi.org/10.1109/CVPR.2009.5206744

  40. Soomro K, Zamir AR, Shah M (2012) UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv Preprint arXiv:1212.0402

  41. Wu C, Li Y, Zhang Y et al (2021) Double constrained bag of words for human action recognition. Signal Process Image Commun 98:116399

    Article  Google Scholar 

  42. Han HG, Wang LD, Qiao JF (2014) Hierarchical extreme learning machine for feedforward neural network. Neurocomputing 128(27):128–135

    Google Scholar 

  43. Ghalyan IFJ, Chacko SM, Kapila V (2018) Simultaneous robustness against random initialization and optimal order selection in bag-of-words modeling. Pattern Recogn Lett 116:135–142

    Article  Google Scholar 

  44. Ghalyan IFJ (2020) Estimation of ergodicity limits of bag-of-words modeling for guaranteed stochastic convergence. Pattern Recogn 99:107094

    Article  Google Scholar 

  45. Li J, Han Y, Zhang M et al (2022) Multi-scale residual network model combined with global average pooling for action recognition. Multimed Tools Appl. https://doi.org/10.1007/s11042-021-11435-5

    Article  Google Scholar 

  46. Zhang C, Xu Y, Xu Z et al (2022) Hybrid handcrafted and learned feature framework for human action recognition. Appl Intell 52(11):12771–12787

    Article  Google Scholar 

  47. Lin B, Fang B, Yang W, Qian J (2018) Human action recognition based on spatio-temporal three-dimensional scattering transform descriptor and an improved vlad feature encoding algorithm. Neurocomputing 348(5):145–157. https://doi.org/10.1016/j.neucom.2018.05.121

    Article  Google Scholar 

  48. Sun Y, Zhang Z, Jiang W et al (2020) Discriminative local sparse representation by robust adaptive dictionary pair learning. IEEE Trans Neural Netw Learn Syst 31(10):4303–4317

    Article  MathSciNet  Google Scholar 

  49. Koniusz P, Yan F, Gosselin PH et al (2016) Higher-order occurrence pooling for bags-of-words: visual concept detection. IEEE Trans Pattern Anal Mach Intell 39(2):313–326

    Article  Google Scholar 

  50. Kiruba K, Shiloah ED, Sunil RRC (2019) Hexagonal volume local binary pattern (H-VLBP) with deep stacked autoencoder for human action recognition. Cogn Syst Res 58:71–93. https://doi.org/10.1016/j.cogsys.2019.03.001

    Article  Google Scholar 

  51. Quan Y, Chen Y, Xu R, Ji H (2019) Attention with structure regularization for action recognition. Comput Vis Image Understand 187:102794. https://doi.org/10.1016/j.cviu.2019.102794

    Article  Google Scholar 

  52. Afza F, Khan MA, Sharif M et al (2021) A framework of human action recognition using length control features fusion and weighted entropy-variances based feature selection. Image Vis Comput 106:104090. https://doi.org/10.1016/j.imavis.2020.104090

    Article  Google Scholar 

  53. Liu M, Yin M, Han K et al (2023) Algorithm and hardware co-design co-optimization framework for LSTM accelerator using quantized fully decomposed tensor train. Internet of Things. https://doi.org/10.1016/j.iot.2023.100680

    Article  Google Scholar 

  54. Zhen P, Yan X, Wang W et al (2023) A Highly compressed accelerator with temporal optical flow feature fusion and tensorized LSTM for video action recognition on terminal device. IEEE Trans Comput Aid Des Integr Circuits Syst. https://doi.org/10.1109/TCAD.2023.3241113

    Article  Google Scholar 

  55. Leyva R, Sanchez V, Li CT (2019) Compact and low-complexity binary feature descriptor and Fisher vectors for video analytics. IEEE Trans Image Process 28(12):6169–6184. https://doi.org/10.1109/TIP.2019.2922826

    Article  MathSciNet  MATH  Google Scholar 

  56. Yang G, Zou W (2022) Deep learning network model based on fusion of spatiotemporal features for action recognition. Multimed Tools Appl 81(7):9875–9896. https://doi.org/10.1007/s11042-022-11937-w

    Article  Google Scholar 

  57. Zong M, Wang R, Chen X, Chen Z, Gong Y (2021) Motion saliency based multi-stream multiplier ResNets for action recognition. Image Vis Comput 107:104108. https://doi.org/10.1016/j.imavis.2021.104108

    Article  Google Scholar 

  58. Liu T, Ma Y, Yang W, Ji W, Wang R, Jiang P (2022) Spatial-temporal interaction learning based two-stream network for action recognition. Inf Sci 606:864–876. https://doi.org/10.1016/j.ins.2022.05.092

    Article  Google Scholar 

  59. Zhao H, Liu J, Wang W (2023) Research on human behavior recognition in video based on 3DCCA. Multimed Tools Appl. https://doi.org/10.1007/s11042-023-14355-8

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by High-Level Talent Scientific Research Start-up Foundation of Henan Institute of Technology of China (KQ2109)

Author information

Authors and Affiliations

Authors

Contributions

CW wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Chao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Sang, Y. & Gao, Y. Extreme Learning Machine Combining Hidden-Layer Feature Weighting and Batch Training for Classification. Neural Process Lett 55, 10951–10973 (2023). https://doi.org/10.1007/s11063-023-11358-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-023-11358-2

Keywords

Navigation