Skip to main content
Log in

Exploring the photocatalytic degradation of methylene blue and carbol fuchsin dyes by magnesium codoped on graphene oxide and titanium dioxide green composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This research synthesized and characterized nature friendly green composites comprising graphene, titanium, and magnesium oxides (GO–TiO2/MgO) and its dye degradation efficiency. The deposition of GO–TiO2/MgO nanocomposites were achieved using ultrasonication, followed by the synthesis of green composites using Moringa oleifera seed extract as reductant. Crystallographic studies were confirmed by X-ray diffraction, functional groups and presence of elements were confirmed using Fourier-transform infrared spectroscopy (FTIR) and energy dispersive X-ray analysis (EDAX). Phase structure and vibrational modes were authenticated using Raman spectroscopy. Photoluminescence studies conveys the electrical characterization. Morphology of the samples were verified using Field emission scanning electron microscopy (FESEM) and High-resolution transmission electron microscopy (HRTEM). Among the samples, NC MgO1 displays PSD (Particle size distribution) of 8.8 nm with bandgap energy of 3.26 eV with crystalline size 21 nm possessing surface area of 70 m2/g exhibits better photocatalytic activity. N2 Adsorption–Desorption analysis reveals the pore radius, volume, and surface area of the specimen. Selected area electron diffraction (SAED) pattern exhibits the sample’s polycrystalline nature, with diffraction signals matches with the MgO and TiO2 anatase crystalline phase, while FESEM analysis corroborated the morphological modification of TiO2 after GO incorporation and sensitization. Optical analyses indicated enhanced properties of TiO2 in the visible range with the presence of natural sensitizer (Moringa oleifera seed extract) MgO and GO. Additionally, photocatalytic degradation studies of methylene blue and carbol fuchsin under UV visible irradiation in aqueous solution, employing a pseudo-first-order model, revealed a significant synergistic effect of 85% yield at 90 min with a rate constant and correlation efficiency for methylene blue was 0.018764/min and 0.98453 and for carbol fuchsin it was found to be 0.0227538/min and 0.9956.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included in the article. Should further data or information be required, these are available from the corresponding author upon request.

References

  1. A. Toqeer, I. Saba, Y. Khwaja, N.M. Butt, P. Arshad, Emerging nanotechnology-based methods for water purification: a review. Desalin. Water Treat. 52(22/24), 4089–4101 (2014). https://doi.org/10.1080/19443994.2013.801789

    Article  CAS  Google Scholar 

  2. U. Alam, A. Khan, D. Ali, D. Bahnemann, M. Muneer, Comparative photocatalytic activity of sol-gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes. RSC Adv. 8(31), 17582–17594 (2018). https://doi.org/10.1039/C8RA01638K

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. R.S. Castro, L. Caetano, G. Ferreira, P.M. Padilha, M.J. Saeki, L.F. Zara, M.A.U. Martines, G.R. Castro, Banana peel applied to the solid phase extraction of copper and lead from river water: preconcentration of metal ions with a fruit waste. Ind. Eng. Chem. Res. 50(6), 3446–3451 (2011). https://doi.org/10.1021/ie101499e

    Article  CAS  Google Scholar 

  4. T. Ahmed, S. Imdad, K. Yaldram, N.M. Butt, A. Pervez, Emerging nanotechnology-based methods for water purification: a review. Desalin. Water Treat. 52(22–24), 4089–4101 (2014). https://doi.org/10.1080/19443994.2013.801789

    Article  CAS  Google Scholar 

  5. M. Nasrollahzadeh, M. Atarod, B. Jaleh, M. Gandomirouzbahani, In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue. Ceram. Int. 42(7), 8587–8596 (2016). https://doi.org/10.1016/j.ceramint.2016.02.088

    Article  CAS  Google Scholar 

  6. A. Karuppanan, V. Athikesavan, P.B. Bhargav et al., Synthesis and characterization of K0.5Bi0.5TiO3–BaTiO3 piezoelectric ceramics for energy storage applications. J. Mater. Sci. Mater. Electron. 32, 717–726 (2021). https://doi.org/10.1007/s10854-020-04851-0

    Article  CAS  Google Scholar 

  7. M.A.L. Grace, R. Sambasivam, R.N. Perumal, V. Athikesavan, Enhanced synthesis, structure, and ferroelectric properties of Nb-modified 1–x [Bi0.5 (Na0.4K0.1) (Ti1–xNbx)]O3–x (Ba0.7Sr0.3) TiO3 ceramics for energy storage applications. J. Aust. Ceram. Soc. 56, 157–165 (2020). https://doi.org/10.1007/s41779-019-00441-4

    Article  CAS  Google Scholar 

  8. S. Saranya, M. Rajkumar, V. Rajendran, Synthesis and characterisation of TIO2/Fe2O3 green composites co-doped on go and to study its photocatalytic degradation on methylene blue and Carbol fuchsin dyes. J. Mater. Sci. Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-11675-1

    Article  Google Scholar 

  9. R. Rashid, I. Shafiq, P. Akhter, M.J. Iqbal, M. Hussain, A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environ. Sci. Pollut. Res. 28, 9050–9066 (2021). https://doi.org/10.1007/s11356-021-12395-x

    Article  CAS  Google Scholar 

  10. O.F.S. Khasawneh, P. Palaniandy, M. Ahmadipour, H. Mohammadi, M.R.B. Hamdan, Removal of acetaminophen using Fe2O3–TiO2 nanocomposites by photocatalysis under simulated solar irradiation: optimization study. J. Environ. Chem. Eng. 9(1), 104921 (2021). https://doi.org/10.1016/j.jece.2020.104921

    Article  CAS  Google Scholar 

  11. D. Komaraiah, E. Radha, N. Kalarikkal, J. Sivakumar, M.R. Reddy, R. Sayanna, Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts. Ceram. Int. 45(18), 25060–25068 (2019). https://doi.org/10.1016/j.ceramint.2019.03.170

    Article  CAS  Google Scholar 

  12. B. Paulchamy, G. Arthi, B.D. Lignesh, A simple approach to stepwise synthesis of graphene oxide nanomaterial. J. Nanomed. Nanotechnol. 6, 253 (2015). https://doi.org/10.4172/2157-7439.1000253

    Article  CAS  Google Scholar 

  13. A. Benhammada, D. Trache, M. Kesraoui, A.F. Tarchoun, S. Chelouche, A. Mezroua, Synthesis and characterization of α-Fe2O3 nanoparticles from diferent precursors and their catalytic effect on the thermal decomposition of nitrocellulose. Thermochim. Acta 686, 178570 (2020). https://doi.org/10.1016/j.tca.2020.178570

    Article  CAS  Google Scholar 

  14. K. Sathish Kumar, K.R. Rohit Narayanan, S. Siddarth, R. Pavan Kumar, R. Badri Narayan, R. Goutham, V. Samynaathan, Synthesis of MgO/TiO2 nanocomposite and its application in photocatalytic dye degradation. Int. J. Chem. React. Eng. (2018). https://doi.org/10.1515/ijcre-2017-0136

    Article  Google Scholar 

  15. S.S. Salem, E.F. EL-Belely, G. Niedbała, M.M. Alnoman, S.E.-D. Hassan, A.M. Eid, T.I. Shaheen, A. Elkelish, A. Fouda, Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials 10, 2082 (2020). https://doi.org/10.3390/nano10102082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. E.R. Essien, V.N. Atasie, A.O. Okeafor, D.O. Nwude, Biogenic synthesis of magnesium oxide nanoparticles using Manihot esculenta (Crantz) leaf extract. Int. Nano Lett. 10(1), 43–48 (2020). https://doi.org/10.1007/s40089-019-00290-w

    Article  CAS  Google Scholar 

  17. A. Ch, K.V. Rao, C.H.S. Chakra, Synthesis and characterization of MgO/TiO2 nanocomposites. J. Nanomed. Nanotechnol. (2015). https://doi.org/10.4172/2157-7439.1000329

    Article  Google Scholar 

  18. M. Behpour, P. Shirazi, M. Rahbar, Immobilization of the Fe2O3/TiO2 photocatalyst on carbon fber cloth for the degradation of a textile dye under visible light irradiation. React. Kinet. Mech. Catal. 127, 1073–1085 (2019). https://doi.org/10.1007/s11144-019-01581-1

    Article  CAS  Google Scholar 

  19. S. Razak, M.A. Nawi, K. Haitham, Fabrication, characterization and application of a reusable immobilized TiO2–PANI photocatalyst plate for the removal of reactive red 4 dye. Appl. Surf. Sci. 319, 90–98 (2014). https://doi.org/10.1016/j.apsusc.2014.07.049

    Article  CAS  Google Scholar 

  20. J. Yu, H. Yu, C.H. Ao, S.C. Lee, J.C. Yu, W. Ho, Preparation, characterization and photocatalytic activity of in situ MgO-doped TiO2 thin films. Thin Solid Films 496(2), 273–280 (2006). https://doi.org/10.1016/j.tsf.2005.08.352

    Article  CAS  Google Scholar 

  21. L. Che, Y. Guo, C. Liao, X. Sheng, Z. Zeng, Z. Liu, C. Cai, One-step fabrication of efMgOctive mesoporous layer consisted of self-assembled MgO/TiO2 core/shell nanoparticles for mesostructured perovskite solar cells. Mater. Res. Express 6(8), 086440 (2019). https://doi.org/10.1088/2053-1591/ab221b

    Article  CAS  Google Scholar 

  22. P. Saengkwamsawang, K. Tochat, Characterizations and optical properties of MgO nanosheets synthesized by a simple sol–gel using a polyvinyl alcohol for precursor template. J. Nanopart. Res. 23, 214 (2021). https://doi.org/10.1007/s11051-021-05323-0

    Article  CAS  Google Scholar 

  23. K. Kaneko, Determination of pore size and pore size distribution: 1. Adsorbents and catalysts. J. Membr. Sci. 96(1–2), 59–89 (1994). https://doi.org/10.1016/0376-7388(94)00126-X

    Article  CAS  Google Scholar 

  24. A. Fouda, S.E.D. Hassan, E. Saied, M.F. Hamza, Photocatalytic degradation of real textile and tannery effluent using biosynthesized magnesium oxide nanoparticles (MgO-NPs), heavy metal adsorption, phytotoxicity, and antimicrobial activity. J. Environ. Chem. Eng. 9(4), 105346 (2021). https://doi.org/10.1016/j.jece.2021.105346

    Article  CAS  Google Scholar 

  25. I.H. Chowdhury, A.H. Chowdhury, P. Bose, S. Mandal, M.K. Naskar, Effect of anion type on the synthesis of mesoporous nanostructured MgO, and its excellent adsorption capacity for the removal of toxic heavy metal ions from water. RSC Adv. 6(8), 6038–6047 (2016). https://doi.org/10.1039/C5RA16837F

    Article  CAS  Google Scholar 

  26. M. Antony Lilly Grace, A. Suvitha, H. Trilaksana et al., Temperature-dependent energy storage performance of La2O3-doped(1–x) Bi0.5(Na0.84K0.16)0.5TiO3–xSrTiO3 multifunctional ceramics for piezoelectric sensor applications. J. Mater. Res. 38, 4902–4912 (2023). https://doi.org/10.1557/s43578-023-01200-9

    Article  CAS  Google Scholar 

  27. K.A. Aly, M.M. Ebrahium, Preparation and study of La-doped bismuth sodium potassium titanate-strontium titanate piezoelectric ceramics to enhance energy storage properties. Ceram. Int. 50(7), 11676–11687 (2024). https://doi.org/10.1016/j.ceramint.2024.01.071

    Article  CAS  Google Scholar 

  28. M. Arulmani, Evaluation of the structure and electrical properties of (1–x)Bi0.5(Na0.80 K0.20)0.5TiO3–xLiNbO3 ceramic composite for piezoelectric sensor applications. Int. J. Mod. Phys. (2023). https://doi.org/10.1142/S0217979223502806

    Article  Google Scholar 

  29. Rajesh Narayana Perumal, Studies on 0.95Bi0.5(Na0.40K0.10)TiO3–0.05(Ba0.7Sr0.3)TiO3 ceramics for piezoelectric applications under different sintering temperature. Ferroelectrics, 540(1), 65–71. https://doi.org/10.1080/00150193.2019.1611107

  30. Rajesh Narayana Perumal, Venkatraj Athikesavan, Influence of lanthanides (Ln = La, Nd, and Y) in [Ba0.95Ln0.05] [Zr0.25Ti0.75]O3 lead-free piezoelectric solid solutions. Ferroelectrics 555(1), 88–100 (2020). https://doi.org/10.1080/00150193.2019.1691386

  31. K.M. Shrestha, C.M. Sorensen, K.J. Klabunde, MgO-TiO2 mixed oxide nanoparticles: comparison of flame synthesis versus aerogel method; characterization, and photocatalytic activities. J. Mater. Res. 28(3), 431–439 (2013). https://doi.org/10.1557/jmr.2012.288

    Article  CAS  Google Scholar 

  32. Athikesavan, Structural and electrical properties of Pb(Mg1/3Nb2/3)O3-Pb(Yb1/2Nb1/2) O3-PbTiO3 ternary ceramic for energy storage application. Ferroelectr. Lett. Sect. 49(4–6), 104–110. https://doi.org/10.1080/07315171.2022.2122415

  33. Rajesh Narayana Perumal, S. Sadhasivam, Structural, dielectric, AC conductivity, piezoelectric and impedance spectroscopy studies on PbZr0.52Ti0.48O3:RE3+ (RE3+: La3+, Nd3+ and Dy3+) ceramics. Results Phys. 15, 102729, https://doi.org/10.1016/j.rinp.2019.102729

  34. E. Suryakanth, of the structural and electrical properties of perovskite NKN-LN ceramics for energy storage applications. New J. Chem. 46, 20433–20444 (2022). https://doi.org/10.1039/D2NJ04420J

    Article  Google Scholar 

  35. M.A.L. Grace, R. Sambasivam, R.N. Perumal et al., Enhanced synthesis, structure, and ferroelectric properties of Nb-modified 1–x[Bi0.5(Na0.4K0.1)(Ti1−xNbx)]O3-x(Ba0.7Sr0.3)TiO3 ceramics for energy storage applications. J. Aust. Ceram. Soc. 56, 157–165 (2029). https://doi.org/10.1007/s41779-019-00441-4

    Article  CAS  Google Scholar 

  36. A. Karuppanan, V. Athikesavan, P.B. Bhargav et al., Synthesis and characterization of K0.5Bi0.5TiO3-BaTiO3 piezoelectric ceramics for energy storage applications. J. Mater. Sci. Mater. Electron. 32, 717–726 (2020). https://doi.org/10.1007/s10854-020-04851-0

    Article  CAS  Google Scholar 

  37. R.N. Perumal, V. Athikesavan, Structural and electrical properties of lanthanide-doped Bi0.5(Na0.80K0.20)0.5TiO3–SrZrO3 piezoelectric ceramics for energy-storage applications. J. Mater. Sci. Mater. Electron. 31, 4092–4105 (2020). https://doi.org/10.1007/s10854-020-02956-0

    Article  CAS  Google Scholar 

  38. R.N. Perumal, V. Athikesavan, P. Nair, Influence of lead titanate additive on the structural and electrical properties of Na0.5Bi0.5TiO3-SrTiO3 piezoelectric ceramics. Ceram. Int. 44(11), 13259–13266 (2018). https://doi.org/10.1016/j.ceramint.2018.04.155

    Article  CAS  Google Scholar 

  39. R.N. Perumal, V. Athikesavan, Investigations on electrical and energy storage behaviour of PZN-PT, PMN-PT, PZN–PMN-PT piezoelectric solid solutions. J. Mater. Sci. Mater. Electron. 30, 902–913 (2018). https://doi.org/10.1007/s10854-018-0361-x

    Article  CAS  Google Scholar 

  40. L. Todan, T. Dascalescu, S. Preda, C. Andronescu, C. Munteanu, D.C. Culita, A. Rusu, R. State, M. Zaharescu, Porous nanosized oxide powders in the MgO-TiO2 binary system obtained by sol-gel method. Ceram. Int. 40(10), 15693–15701 (2014). https://doi.org/10.1016/j.ceramint.2014.07.092

    Article  CAS  Google Scholar 

  41. A. Muthuvel, M. Jothibas, C. Manoharan, S.J. Jayakumar, Synthesis of CeO2-NPs by chemical and biological methods and their photocatalytic, antibacterial and in vitro antioxidant activity. Res. Chem. Intermed. 46, 2705–2729 (2020). https://doi.org/10.1007/s11164-020-04115-w

    Article  CAS  Google Scholar 

  42. M.M. Khan, R. Siwach, S. Kumar, A.N. Alhazaa, Role of Fe doping in tuning photocatalytic and photoelectrochemical properties of TiO2 for photodegradation of methylene blue. Opt. Laser Technol. 118, 170–178 (2019). https://doi.org/10.1016/j.optlastec.2019.05.012

    Article  CAS  Google Scholar 

  43. A. Raji, K.N. Pandiyaraj, V. Kandavelu, D. Vasu, D. Saravanan, Efciency evaluation of the photocatalytic degradation of telmisartan anti-hypertensive drug with Fenton, photo-Fenton and recyclable TiO2 heterogeneous catalyst. React. Kinet. Mech. Catal. 130, 1141–1154 (2020). https://doi.org/10.1007/s11144-020-01806-8

    Article  CAS  Google Scholar 

  44. R.N. Perumal, Structural, dielectric, piezoelectric and ferroelectric properties of lead-free (1−x) Na0.5Bi0.5TiO3-xBaTiO3 (x=0.00, 0.04, 0.06, 0.08) ceramic. AIP Conf. Proc. 2115, 030025. https://doi.org/10.1063/1.5112864

  45. K. Binnemans, Interpretation of europium (III) spectra. Coord. Chem. Rev. 295, 1–45 (2015). https://doi.org/10.1016/j.ccr.2015.02.015

    Article  CAS  Google Scholar 

  46. A.R. Dhobale, M. Mohapatra, V. Natarajan, S.V. Godbole, Synthesis and photoluminescence investigations of the white light emitting phosphor, vanadate garnet, Ca2NaMg2V3O12 co-doped with Dy and Sm. J. Lumin. 132(2), 293–298 (2012). https://doi.org/10.1016/j.jlumin.2011.09.004

    Article  CAS  Google Scholar 

  47. N. Ma, W. Li, X. Huang, Synthesis, crystal structure, and characterizations of Eu3+-activated Ca2LnHf2(AlO4)3 (ln = Lu, Y and Gd) red-emitting phosphors for phosphors-converted white LEDs. J. Lumin. 265, 120232 (2024). https://doi.org/10.1016/j.jlumin.2023.120232

    Article  CAS  Google Scholar 

  48. J. Chan, L. Cao, W. Li, N. Ma, Z. Xu, X. Huang, Highly efficient broad-band greenemitting cerium(III)-activated garnet phosphor allows the fabrication of blue-chipbasedwarm-white LED device with a superior color rendering index. Inorg. Chem. 61(18), 6953–6963 (2022). https://doi.org/10.1021/acs.inorgchem.2c00326

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

We recognize that everyone who contributed meaningfully to this project assumes responsibility for its content. The contributions made by each author are noted below. S. Saranya: Writing-original draft, Methodology, Resources and conceptualization. M. Rajkumar: Supervision. Venkatraj Athikesavan: Formal analysis. V. Rajendran: Visualization.

Corresponding author

Correspondence to M. Rajkumar.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saranya, S., Rajkumar, M., Athikesavan, V. et al. Exploring the photocatalytic degradation of methylene blue and carbol fuchsin dyes by magnesium codoped on graphene oxide and titanium dioxide green composites. J Mater Sci: Mater Electron 35, 1661 (2024). https://doi.org/10.1007/s10854-024-13432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13432-4

Navigation