Skip to main content
Log in

Hydrothermally synthesized nanostructured NiTiO3 thick films for H2S and room temperature CO2 gas sensing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work we are presenting the hydrothermal method to synthesize NiTiO3 perovskite nanoparticles (NPs). The effect of variation in reaction temperature on the structural, optical, electrical and gas sensing properties of NiTiO3 nanoparticles was investigated. The nanoparticles synthesized at different reaction temperatures were characterized by various characterization methods like XRD, FTIR, UV–Visible Spectroscopy, FESEM, TEM, HRTEM and SAED. The results of UV–Visible analysis revealed that band gap of NiTiO3 decreased from 2.90 to 2.56 eV on increase in reaction temperature from 140 to 200 °C. The XRD analysis showed that crystallite size decreased in the range of 21 to 12 nm on increase in reaction temperature. The various parameters of the material like dislocation density, microstrain and crystallinity were also calculated from XRD data. The average particle size was estimated by FESEM analysis and found to be decreased on increase in reaction temperature. FTIR analysis confirmed the formation of NiTiO3. Study of electrical properties proved the semiconducting behaviour of NiTiO3. The detail analysis of NiTiO3 sensor characteristics in terms of sensitivity, selectivity, response and recovery time was carried out. The study of gas sensing performance of NiTiO3 revealed that NiTiO3 synthesized at 140 °C showed maximum sensitivity to CO2 gas at room temperature, whereas NiTiO3 synthesized at 200 °C showed maximum sensitivity to H2S gas at 250 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M.A. Ruiz-Preciado, A. Kassiba, A. Gibaud, A. Morales-Acevedo, Comparison of nickel titanate (NiTiO3) powders synthesized by sol-gel and solid state reaction. Mater. Sci. Semicond. Process. 37, 171–178 (2015). https://doi.org/10.1016/j.mssp.2015.02.063

    Article  CAS  Google Scholar 

  2. T. Li, C.C. Wang, C.M. Lei, X.H. Sun, G.J. Wang, L.N. Liu, Conductivity relaxation in NiTiO3 at high temperatures. Curr. Appl. Phys. 13(8), 1728–1731 (2013). https://doi.org/10.1016/j.cap.2013.07.002

    Article  Google Scholar 

  3. N. Dharmaraj, H.C. Park, C.K. Kim, H.Y. Kim, D.R. Lee, Nickel titanate nanofibers by electrospinning. Mater. Chem. Phys. 87(1), 5–9 (2004). https://doi.org/10.1016/j.matchemphys.2004.05.005

    Article  CAS  Google Scholar 

  4. O. Yamamoto, Y. Takeda, R. Kanno, M. Noda, perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells. Solid State Ionics 22, 241–246 (1986)

    Article  Google Scholar 

  5. D.D. Kajale, V.B. Gaikwad, S.D. Shinde, D.N. Chavan, G.E. Patil, Effect of surface modification on SrTiO3 thick films: room temperature H2S Gas sensor. Sens. Transducers 137(2), 10–21 (2012)

    CAS  Google Scholar 

  6. J.W. Fergus, Perovskite oxides for semiconductor-based gas sensors. Sens. Actuators, B Chem. 123(2), 1169–1179 (2007). https://doi.org/10.1016/j.snb.2006.10.051

    Article  CAS  Google Scholar 

  7. M. Singh, B.C. Yadav, A. Ranjan, M. Kaur, S.K. Gupta, Synthesis and characterization of perovskite barium titanate thin film and its application as LPG sensor. Sens. Actuators, B Chem. 241, 1170–1178 (2017). https://doi.org/10.1016/j.snb.2016.10.018

    Article  CAS  Google Scholar 

  8. F. Zaza, G. Orio, E. Serra, F. Caprioli, M. Pasquali, Low-Temperature capacitive sensor based on perovskite oxides. AIP Conference Proceedings 1667, (2015). https://doi.org/10.1063/1.4922560

  9. P.M. Bulemo, I.D. Kim, Recent advances in ABO3 perovskites: their gas-sensing performance as resistive-type gas sensors. J. Korean Ceram. Soc. 57(1), 24–39 (2020). https://doi.org/10.1007/s43207-019-00003-1

    Article  CAS  Google Scholar 

  10. B. Szafraniak, Ł Fuśnik, J. Xu, F. Gao, A. Brudnik, A. Rydosz, Semiconducting metal oxides: SrTiO3, BaTiO3 and BaSrTiO3 in gas-sensing applications: a review. Coatings 11(2), 1–23 (2021). https://doi.org/10.3390/coatings11020185

    Article  CAS  Google Scholar 

  11. K.S. Beenakumari, Synthesis and characterisation of nano-sized nickel titanate photocatalyst. J. Exp. Nanosci. 8(2), 203–209 (2013). https://doi.org/10.1080/17458080.2011.566631

    Article  CAS  Google Scholar 

  12. H. Khojasteh, M. Salavati-Niasari, S. Mortazavi-Derazkola, Synthesis, characterization and photocatalytic properties of nickel-doped TiO2 and nickel titanate nanoparticles. J. Mater. Sci. Mater. Electron. 27(4), 3599–3607 (2016). https://doi.org/10.1007/s10854-015-4197-3

    Article  CAS  Google Scholar 

  13. D.J. Taylor, P.F. Fleig, R.A. Page, Characterization of nickel titanate synthesized by sol-gel processing. Thin Solid Films 408(1–2), 104–110 (2002). https://doi.org/10.1016/S0040-6090(02)00143-8

    Article  CAS  Google Scholar 

  14. A.R. Phani, S. Santucci, Structural characterization of nickel titanium oxide synthesized by sol-gel spin coating technique. Thin Solid Films 396(1–2), 1–4 (2001). https://doi.org/10.1016/S0040-6090(01)01131-2

    Article  CAS  Google Scholar 

  15. S. Chuang, M. Hsieha, D. Wang, Structure and dielectric properties of NiTiO3 powders synthesized by the modified sol–gel method. J. Chin. Chem. Soc. 59(5), 628–632 (2012). https://doi.org/10.1002/jccs.201100496

    Article  CAS  Google Scholar 

  16. V. Gupta, K.K. Bamzai, P.N. Kotru, B.M. Wanklyn, Mechanical characteristics of flux-grown calcium titanate and nickel titanate crystals. Mater. Chem. Phys. 89(1), 64–71 (2005). https://doi.org/10.1016/j.matchemphys.2004.08.027

    Article  CAS  Google Scholar 

  17. A.V. Murugan, V. Samuel, S.C. Navale, V. Ravi, Phase evolution of NiTiO3 prepared by coprecipitation method. Mater. Lett. 60(15), 1791–1792 (2006). https://doi.org/10.1016/j.matlet.2005.12.023

    Article  CAS  Google Scholar 

  18. T.T. Pham, S.G. Kang, E.W. Shin, Optical and structural properties of Mo-doped NiTiO3 materials synthesized via modified Pechini methods. Appl. Surf. Sci. 411, 18–26 (2017). https://doi.org/10.1016/j.apsusc.2017.03.123

    Article  CAS  Google Scholar 

  19. P. Yuan, C. Fan, G. Ding, Y. Wang, X. Zhang, Preparation and photocatalytic properties of ilmenite NiTiO3 powders for degradation of humic acid in water. Int. J. Miner. Metall. Mater. 19(4), 372–376 (2012). https://doi.org/10.1007/s12613-012-0566-6

    Article  CAS  Google Scholar 

  20. N. Kaur, M. Singh, A. Moumen, G. Duina, E. Comini, 1D titanium dioxide: achievements in chemical sensing. Materials 13(13), 1–21 (2020). https://doi.org/10.3390/ma13132974

    Article  CAS  Google Scholar 

  21. B. Zhao, L. Lin, D. He, Phase and morphological transitions of titania/titanate nanostructures from an acid to an alkali hydrothermal environment. J. Mater. Chem. A 1(5), 1659–1668 (2013). https://doi.org/10.1039/c2ta00755j

    Article  CAS  Google Scholar 

  22. J. Casanova-Chafer, R. Garcia-Aboal, P. Atienzar, E. Llobet, Unraveling the gas-sensing mechanisms of lead-free perovskites supported on graphene. ACS Sens. 7(12), 3753–3763 (2022). https://doi.org/10.1021/acssensors.2c01581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. G.J. Mogal, D.V. Ahire, G.E. Patil, G.H. Jain Jain, V.B. Gaikwad, Hydrothermal synthesis of TiO2 nanorods using TiCl3 and its gas sensing properties. Sci. Technol. Eng. 3(11), 123–130 (2014)

    Google Scholar 

  24. R.P. Patil, P.V. More, G.H. Jain, P.K. Khanna, V.B. Gaikwad, BaTiO3 nanostructures for H2S gas sensor: Influence of band-gap, size and shape on sensing mechanism. Vacuum 146, 455–461 (2017). https://doi.org/10.1016/j.vacuum.2017.08.008

    Article  CAS  Google Scholar 

  25. S.D. Shinde, V.B. Gaikwad, G.E. Patil, D.D. Kajale, G.H. Jain, Gas sensing performance of nanostructured ZnO thick film resistors. Int. J. Nanoparticles 5(2), 126–135 (2012). https://doi.org/10.1504/IJNP.2012.046239

    Article  CAS  Google Scholar 

  26. M.K. Deore, V.B. Gaikwad, R.M. Chaudhari, N.U. Patil, P.D. Hire, S.B. Deshmukh, G.E. Patil, V.G. Wagh, G.H. Jain, Formulation, Characterization and LPG-sensing properties of CuO-doped ZnO thick film resistor. Adv. Sens. Technol. (2013). https://doi.org/10.1007/978-3-642-32180-1_16

    Article  Google Scholar 

  27. M. Shellaiah, K.W. Sun, Review on sensing applications of perovskite nanomaterials. Chemosensors (2020). https://doi.org/10.3390/chemosensors8030055

    Article  Google Scholar 

  28. G.H. Jain, V.B. Gaikwad, D.D. Kajale, R.M. Chaudhari, R.L. Patil, N.K. Pawar, M.K. Deore, S.D. Shinde, L.A. Patil, Gas sensing performance of pure and modified BST thick film resistor. Sens. Transducers 90, 160–173 (2008)

    CAS  Google Scholar 

  29. D.N. Chavan, G.E. Patil, D.D. Kajale, V.B. Gaikwad, P.K. Khanna, G.H. Jain, Nano Ag-doped In2O3 thick film: a low-temperature H2S gas sensor. J. Sens. (2011). https://doi.org/10.1155/2011/824215

    Article  Google Scholar 

  30. A. Habib, R. Haubner, N. Stelzer, Effect of temperature, time and particle size of Ti precursor on hydrothermal synthesis of barium titanate. Mater. Sci. Eng. B 152(1–3), 60–65 (2008). https://doi.org/10.1016/j.mseb.2008.06.018

    Article  CAS  Google Scholar 

  31. S. García-García, S. Wold, M. Jonsson, Effects of temperature on the stability of colloidal montmorillonite particles at different pH and ionic strength. Appl. Clay Sci. 43(1), 21–26 (2009). https://doi.org/10.1016/j.clay.2008.07.011

    Article  CAS  Google Scholar 

  32. A. Noviyanto, R. Amalia, P.Y.D. Maulida, M. Dioktyanto, B.H. Arrosyid, D. Aryanto, L. Zhang, A.T.S. Wee, N. Arramel, Anomalous temperature-induced particle size reduction in manganese oxide nanoparticles. ACS Omega 8(47), 45152–45162 (2023). https://doi.org/10.1021/acsomega.3c08012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. N.R. Yogamalar, A.C. Bose, Burstein-Moss shift and room temperature near-band-edge luminescence in lithium-doped zinc oxide. Appl. Phys. A Mater. Sci. Process. 103(1), 33–42 (2011). https://doi.org/10.1007/s00339-011-6304-5

    Article  CAS  Google Scholar 

  34. Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, H.H. Hng, Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. J. Appl. Phys. 94(1), 354–358 (2003). https://doi.org/10.1063/1.1577819

    Article  CAS  Google Scholar 

  35. S. Dutta, S. Chattopadhyay, M. Sutradhar, A. Sarkar, M. Chakrabarti, D. Sanyal, D. Jana, Defects and the optical absorption in nanocrystalline ZnO. J. Phys. Condens. Matter 19(23), 236218 (2007). https://doi.org/10.1088/0953-8984/19/23/236218

    Article  CAS  Google Scholar 

  36. Q. Wang, M. Brier, S. Joshi, A. Puntambekar, V. Chakrapani, Defect-induced Burstein-Moss shift in reduced V2O5 nanostructures. Phys. Rev. B (2016). https://doi.org/10.1103/PhysRevB.94.245305

    Article  PubMed  PubMed Central  Google Scholar 

  37. S. Mohan, M. Vellakkat, A. Aravind, U. Reka, Hydrothermal synthesis and characterization of zinc oxide nanoparticles of various shapes under different reaction conditions. Nano Express (2020). https://doi.org/10.1088/2632-959X/abc813

    Article  Google Scholar 

  38. R.S. Singh, T.H. Ansari, R.A. Singh, B.M. Wanklyn, Electrical conduction in NiTiO3 single crystals. Mater. Chem. Phys. 40(3), 173–177 (1995). https://doi.org/10.1016/0254-0584(95)01478-0

    Article  CAS  Google Scholar 

  39. L.G.J. de Haart, A.J. de Vries, G. Blasse, Photoelectrochemical properties of MgTiO3 and other Titanates with the ilmenite structure. Mat. Res. Bull. 19(7), 817–824 (1984). https://doi.org/10.1016/0025-5408(84)90042-4

    Article  Google Scholar 

  40. Y.J. Lin, Y.H. Chang, W.D. Yang, B.S. Tsai, Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepared by a modified Pechini method. J. Non-Cryst. Solids 352(8), 789–794 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.02.001

    Article  CAS  Google Scholar 

  41. M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, Novel route to synthesize nanocrystalline nickel titanate in the presence of amino acids as a capping agent. J. Mater. Sci. Mater. Electron. 27(11), 11873–11878 (2016). https://doi.org/10.1007/s10854-016-5331-6

    Article  CAS  Google Scholar 

  42. T. Acharya, R.N.P. Choudhary, Structural, ferroelectric and electrical properties of NiTiO3 ceramic. J. Electron. Mater. 44(1), 271–280 (2015). https://doi.org/10.1007/s11664-014-3426-5

    Article  CAS  Google Scholar 

  43. M.W. Li, J.P. Yuan, X.M. Gao, E.Q. Liang, C.Y. Wang, Structure and optical absorption properties of NiTiO3 nanocrystallites. Appl. Phys. A Mater. Sci. Process. (2016). https://doi.org/10.1007/s00339-016-0259-5

    Article  Google Scholar 

  44. S. Karmakar, A.K. Manna, S. Varma, D. Behera, Investigation of optical, electrical and magnetic properties of hexagonal NiTiO3 nanoparticles prepared via ultrasonic dispersion techniques for high power applications. Mater. Res. Express (2018). https://doi.org/10.1088/2053-1591/aac404

    Article  Google Scholar 

  45. G. Nagaraju, Udayabhanu, Shivaraj, S.A. Prashanth, M. Shastri, K.V. Yathish, C. Anupama, D. Rangappa, Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Mater. Res. Bull. 94, 54–63 (2017). https://doi.org/10.1016/j.materresbull.2017.05.043

    Article  CAS  Google Scholar 

  46. M. El-Kemary, N. Nagy, I. El-Mehasseb, Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater. Sci. Semicond. Process. 16(6), 1747–1752 (2013). https://doi.org/10.1016/j.mssp.2013.05.018

    Article  CAS  Google Scholar 

  47. E.A. Al-Oubidy, F.J. Kadhim, Photocatalytic activity of anatase titanium dioxide nanostructures prepared by reactive magnetron sputtering technique. Opt. Quant. Electron. (2019). https://doi.org/10.1007/s11082-018-1738-z

    Article  Google Scholar 

  48. S. Yuvaraj, V.D. Nithya, K.S. Fathima, C. Sanjeeviraja, G.K. Selvan, S. Arumugam, R.K. Selvan, Investigations on the temperature dependent electrical and magnetic properties of NiTiO3 by molten salt synthesis. Mater. Res. Bull. 48(3), 1110–1116 (2013). https://doi.org/10.1016/j.materresbull.2012.12.001

    Article  CAS  Google Scholar 

  49. R. Vijayalakshmi, V. Rajendran, Effect of reaction temperature on size and optical properties of NiTiO3 nanoparticles. E-J. Chem. 9(1), 282–288 (2012). https://doi.org/10.1155/2012/607289

    Article  CAS  Google Scholar 

  50. J. Menashi, R. C. Reid, L.Wagner, Doped barium titanate based compositions. U.S. Patent 4863883 (1989).

  51. K. Suematsu, M. Yuasa, T. Kida, N. Yamazoe, K. Shimanoe, Determination of oxygen adsorption species on SnO2: exact analysis of gas sensing properties using a sample gas pretreatment system. J. Electrochem. Soc. 161(6), 123–128 (2014). https://doi.org/10.1149/2.004406jes

    Article  CAS  Google Scholar 

  52. R. Bhusari, J.S. Thomann, J. Guillot, R. Leturcq, Oxygen adsorption and desorption kinetics in CuO nanowire bundle networks: implications for MOx-based gas sensors. ACS Appl. Nano Mater. 5, 10248–10257 (2022). https://doi.org/10.1021/acsanm.2c01245

    Article  CAS  Google Scholar 

  53. F.J. Meng, R.F. Xin, S.X. Li, Metal oxide heterostructures for improving gas sensing properties: a review. Materials (2022). https://doi.org/10.3390/ma16010263

    Article  PubMed  PubMed Central  Google Scholar 

  54. C. Balamurugan, D.-W. Lee, Perovskite hexagonal YMnO3 nanopowder as p-type semiconductor gas sensor for H2S detection. Sens. Actuators B Chem. 221, 857–866 (2015). https://doi.org/10.1016/j.snb.2015.07.018

    Article  CAS  Google Scholar 

  55. X. Li, L. Zhang, N. Luo, J. Chen, J. Cheng, W. Ren, J. Xu, Enhanced H2S sensing performance of BiFeO3 based MEMS gas sensor with corona poling. Sens. Actuators B: Chem. (2022). https://doi.org/10.1016/j.snb.2022.131477

    Article  PubMed  Google Scholar 

  56. A. Marikutsa, A.A. Dobrovolskii, M.N. Rumyantseva, A.A. Mikhaylov, A.G. Medvedev, O. Lev, P.V. Prichodchenko, Improved H2S sensitivity of nanosized BaSnO3 obtained by hydrogen peroxide assisted sol-gel processing. J. Alloys Compd. (2023). https://doi.org/10.1016/j.jallcom.2023.169141

    Article  Google Scholar 

  57. H. Shan, W. Xuan, Z. Li, D. Hu, X. Gu, S. Huang, Room-temperature hydrogen sulfide sensor based on tributyltin oxide functionalized perovskite CsPbBr3 quantum dots. ACS Appl. Nano Mater. 5(5), 6801–6809 (2022). https://doi.org/10.1021/acsanm.2c00791

    Article  CAS  Google Scholar 

  58. D.D. Kajale, G.E. Patil, V.B. Gaikwad, S.D. Shinde, D.N. Chavan, N.K. Pawar, S.R. Shirsath, G.H. Jain, Synthesis of SrTiO3 nanopowder by sol-gel-hydrothemal method for gas sensing application. Int. J. Smart Sens. Intell. Syst. 5(2), 382–400 (2012). https://doi.org/10.21307/ijssis-2017-487

    Article  CAS  Google Scholar 

  59. G.H. Jain, L.A. Patil, P.P. Patil, U.P. Mulik, K.R. Patil, Studies on gas sensing performance of pure and modified barium strontium titanate thick film resistors. Bull. Mater. Sci. 30(1), 9–17 (2007). https://doi.org/10.1007/s12034-007-0003-z

    Article  CAS  Google Scholar 

  60. W. Zhang, C. Xie, G. Zhang, J. Zhang, S. Zhang, D. Zeng, Porous LaFeO3/SnO2 nanocomposite film for CO2 detection with high sensitivity. Mater. Chem. Phys. 186, 228–236 (2017). https://doi.org/10.1016/j.matchemphys.2016.10.048

    Article  CAS  Google Scholar 

  61. S.F.H. Karouei, H.M. Moghaddam, P-p heterojunction of polymer/hierarchical mesoporous LaFeO3 microsphere as CO2 gas sensing under high humidity. Appl. Surf. Sci. 479, 1029–1038 (2019). https://doi.org/10.1016/j.apsusc.2019.02.099

    Article  CAS  Google Scholar 

  62. S. Joshi, S.J. Ippolito, S.R. Periasamy, Y.M. Sabri, M.V. Sunkara, Efficient heterostructures of Ag@CuO/BaTiO3 for low-temperature CO2 gas detection: assessing the role of nanointerfaces during sensing by operando DRIFTS technique. ACS Appl. Mater. Interfaces 9(32), 27014–27026 (2017). https://doi.org/10.1021/acsami.7b07051

    Article  CAS  PubMed  Google Scholar 

  63. K. Fan, H. Qin, L. Wang, L. Ju, J. Hu, CO2 gas sensors based on La1-xSrxFeO3 nanocrystalline powders. Sens. Actuators B Chem. 177, 265–269 (2013). https://doi.org/10.1016/j.snb.2012.11.004

    Article  CAS  Google Scholar 

  64. X. Wang, H. Qin, L. Sun, J. Hu, CO2 sensing properties and mechanism of nanocrystalline LaFeO3 sensor. Sens. Actuators, B Chem. 188, 965–971 (2013). https://doi.org/10.1016/j.snb.2013.07.100

    Article  CAS  Google Scholar 

  65. G.E. Patil, D.D. Kajale, V.B. Gaikwad, G.H. Jain, Effect of thickness on nanostructured SnO2 thin films by spray pyrolysis as highly sensitive H2S gas sensor. J. Nanosci. Nanotechnol. 12(8), 6192–6201 (2012). https://doi.org/10.1166/jnn.2012.6424

    Article  CAS  PubMed  Google Scholar 

  66. G.E. Patil, D.D. Kajale, V.B. Gaikwad, G.H. Jain, Effect of precursor concentration on gas sensing performance of nanocrystalline SnO2 thin films. J. Nanoeng. Nanomanuf. 2(3), 315–323 (2012). https://doi.org/10.1166/jnan.2012.1090

    Article  CAS  Google Scholar 

  67. P. Shankar, J.B.B. Rayappan, Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases-A review. Sci. Lett. J. 4, 126 (2015)

    Google Scholar 

  68. G.E. Patil, D.D. Kajale, D.N. Chavan, N.K. Pawar, P.T. Ahire, S.D. Shinde, V.B. Gaikwad, G.H. Jain, Synthesis, characterization and gas sensing performance of SnO2 thin films prepared by spray pyrolysis. Bull. Mater. Sci. 34(1), 1–9 (2011). https://doi.org/10.1007/s12034-011-0045-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are very grateful to the Principal of SNJB’s KKHA Arts, SMGL Commerce and SPHJ Science College, Chandwad for providing laboratory facilities. The authors are also thankful to the C.I.F of SNJB College and C.I.F of SPPU, Pune for providing the characterization facilities. The authors are also thankful to DST, New Delhi for providing fund for research infrastructure under DST-FIST (Project No. SR/FIST-415/2018). One of the authors (MAM) is very grateful to the MAHAJYOTI Institute, Nagpur for providing Fellowship for the Doctoral Research.

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Manoj A. More: Conceptualization, Methodology, Data curation, Validation, Experiments, Formal analysis, Investigation, Writing original draft. Swapnil A. More: Validation, Data curation. Matthew D. Femi: Validation, Data curation. Gotan H. Jain: Conceptualization, supervision. Sarika D. Shinde: Validation, Formal analysis. Dnyaneshwari Y. Patil: Validation, Formal analysis. Dnyaneshwar D. Kajale: Validation, Formal analysis. Ganesh E. Patil: Conceptualization, Supervision, Validation, Formal analysis.

Corresponding author

Correspondence to Ganesh E. Patil.

Ethics declarations

Competing interests

The authors declare that they have no relevant financial or non-financial conflict of interests.

Ethical approval

This paper meets the ethical standards of this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

More, M.A., More, S.A., Femi, M.D. et al. Hydrothermally synthesized nanostructured NiTiO3 thick films for H2S and room temperature CO2 gas sensing. J Mater Sci: Mater Electron 35, 1706 (2024). https://doi.org/10.1007/s10854-024-13429-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13429-z

Navigation