Skip to main content
Log in

Enhanced magnetic anisotropy in structure, static, and dynamic magnetic properties for Ba3−xLaxCo2Fe24O41 hexaferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Co2Z is a planar ferrite, particularly suitable for soft magnetic applications. There is currently a lack of in-depth research on its high-frequency properties. La3+ ion is a potential ion to regulate its magnetism. Based on this, the crystal structure, microstructure, static, and dynamic magnetic properties of Ba3−xLaxCo2Fe24O41 (x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.25) ceramics were investigated. The findings demonstrate that La substitution retains the crystal structure and form, yet the introduction of extra charge leads to the formation of Fe2+ ions, resulting in a slight decrease in magnetic moment from 51.9 to 48.9 emu/g, while a notable increase in the out-of-plane anisotropic field from 12.2 to 18.3 kOe, which significantly impacts the high-frequency complex magnetic permeability spectrum. Additionally, a thorough analysis of the high-frequency magnetic spectrum indicates that both domain wall movement and magnetization rotation contribute to the magnetic permeability, with magnetization rotation playing predominant. Particularly exciting is that the high-frequency magnetic spectrum results show that the substitution of La for Ba considerably raises the resonance frequency from 2.41 to 3.30 GHz that can be attributed to the increased anisotropy. In conclusion, the substitution of La markedly enhances the high-frequency magnetic properties of Co2Z.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors will supply the relevant data in response to reasonable requests.

References

  1. D. Autissier, A. Podembski, C. Jacquiod, J. Phys. IV JP 7, 1 (1997)

    Google Scholar 

  2. N. Hiratsuka, K. Kakizaki, K. Kamishima, Key Eng. Mater. 421–422, 541 (2010)

    Google Scholar 

  3. M. J. Pourhosseini asl, A. Ghasemi, G. R. Gordani, J. Supercond. Nov. Magn. 29, 795 (2016).

  4. S. Sharma, S.R. Parne, S.S.S. Panda, S. Gandi, Adv. Colloid Interface Sci. 327, 103143 (2024)

    Article  PubMed  CAS  Google Scholar 

  5. W. Lee, Y.K. Hong, J. Park, G. Larochelle, J. Lee, J. Magn. Magn. Mater. 414, 194 (2016)

    Article  CAS  Google Scholar 

  6. K. Singha, R. Jasrotia, Himanshi, L. W. Liu, J. Prakash, A. Verma, P. Kumar, S. K. Godara, M. Chandel, V. P. Singh, S. Thakur, R. Das, A. Kandwal, H. H. Hegazy, P. Sharma, Prog. Solid State Chem. 70, 100404 (2023).

  7. Z. Zheng, X. Wu, Q. Feng, V.G. Harris, J. Am. Ceram. Soc. 103, 1248 (2020)

    Article  CAS  Google Scholar 

  8. P. Lathiya Jing Wang, C. Poonam Lathiya, J. Wang, J. Am. Ceram. Soc. 105, 2678 (2022).

  9. H. Joshi, A. Ruban Kumar, Phys. B Condens. Matter 664, 415018 (2023).

  10. R.C. Pullar, Prog. Mater. Sci. 57, 1191 (2012)

    Article  CAS  Google Scholar 

  11. M.A. Almessiere, Y. Slimani, A.V. Trukhanov, A. Sadaqat, A.D. Korkmaz, N.A. Algarou, H. Aydın, A. Baykal, M.S. Toprak, Nano-Structu. Nano-Objects 26, 100728 (2021)

    Article  CAS  Google Scholar 

  12. X. Huo, H. Su, Q. Zhang, F. Huang, X. Wu, Y. Li, X. Jian, Y. Jing, J. Am. Ceram. Soc. 106, 3643 (2023)

    Article  CAS  Google Scholar 

  13. D.S. Xue, F.S. Li, X.L. Fan, F.S. Wen, Chin. Phys. Lett. 25, 4120 (2008)

    Article  CAS  Google Scholar 

  14. G.F. Dionne, IEEE Trans. Magn. 39, 3121 (2003)

    Article  CAS  Google Scholar 

  15. A. Thakur, A. Manhas, D. Sharma, R. Duglet, M. Singh, J. Magn. Magn. Mater. 566, 170309 (2023)

    Article  CAS  Google Scholar 

  16. Y. Lihua, Y. Jing, F. Zekun, H. Aiping, Adv. Mater. Res. 535–537, 1341 (2012)

    Google Scholar 

  17. Z.W. Li, Z.H. Yang, L.B. Kong, J. Magn. Magn. Mater. 324, 2795 (2012)

    Article  CAS  Google Scholar 

  18. P. Kulik, G. Winter, A. Sokolov, K. Murphy, C. Yu, K. Qian, O. Fitchorova, V. G. Harris, Appl. Phys. Lett. 116, (2020).

  19. D. He, Z. Xu, K. Wang, P. Wu, J. Cui, L. Qiao, T. Wang, J. Magn. Magn. Mater. 588, 171449 (2023)

    Article  CAS  Google Scholar 

  20. H. Wei, Z. Zhang, G. Hussain, L. Zhou, Q. Li, K. (Ken) Ostrikov, Appl. Mater. Today 19, 100596 (2020).

  21. C. Wang, N. Chen, Y. Xiao, J. He, R. Han, N. Song, Ceram. Int. 49, 36233 (2023)

    Article  CAS  Google Scholar 

  22. G. Albanese, A. Deriu, S. Rinaldi, J. Phys. C Solid State Phys. 9, 1313 (1976)

    Article  CAS  Google Scholar 

  23. J.J. Xu, C.M. Yang, H.F. Zou, Y.H. Song, G.M. Gao, B.C. An, S.C. Gan, J. Magn. Magn. Mater. 321, 3231 (2009)

    Article  CAS  Google Scholar 

  24. M.M. Rashad, H.M. El-Sayed, M. Rasly, A.A. Sattar, I.A. Ibrahim, J. Mater. Sci. Mater. Electron. 24, 282 (2013)

    Article  CAS  Google Scholar 

  25. Z.F. Gu, Z.C. Yu, B. Hong, J.C. Xu, Y.B. Han, X.L. Peng, H.L. Ge, X.Q. Wang, J. Alloys Compd. 969, 172296 (2023)

    Article  CAS  Google Scholar 

  26. S. Singh, P. Khichi, S. Dahiya, R. Punia, A.S. Maan, R. Tripathi, A. Ohlan, Ceram. Int. 49, 4599 (2023)

    Article  CAS  Google Scholar 

  27. A.M. Alsmadi, I. Bsoul, S.H. Mahmood, G. Alnawashi, F.M. Al-Dweri, Y. Maswadeh, U. Welp, J. Alloys Compd. 648, 419 (2015)

    Article  CAS  Google Scholar 

  28. A. Chevalier, E. Le Guen, A.C. Tarot, B. Grisart, D. Souriou, P. Queffelec, A. Thakur, J.L. Mattei, IEEE Trans. Magn. 47, 4132 (2011)

    Article  CAS  Google Scholar 

  29. G. Herrera, J. Appl. Phys. 108, 3 (2010)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (No. 2022YFB3504800), by the National Natural Science Foundation of China (Grant No. 62271106), and by the National Key Research and Development Program of China (No. 2018YFE0115500).

Author information

Authors and Affiliations

Authors

Contributions

Yanlin Ma contributed to Data curation, Investigation, Methodology, Software, and Writing—original draft. Jie Li contributed to Conceptualization, Funding acquisition, Supervision, and Writing—review & editing. Yida Lei contributed to Resources and Software. Kui Liu contributed to Data curation. Yang Xiao contributed to Methodology. Lei Liu contributed to Formal analysis. Yingli Liu contributed to Project administration. Zhiyong Zhong contributed to Conceptualization, Supervision.

Corresponding author

Correspondence to Zhiyong Zhong.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Li, J., Lei, Y. et al. Enhanced magnetic anisotropy in structure, static, and dynamic magnetic properties for Ba3−xLaxCo2Fe24O41 hexaferrites. J Mater Sci: Mater Electron 35, 1669 (2024). https://doi.org/10.1007/s10854-024-13422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13422-6

Navigation