Skip to main content
Log in

La2Zr2O7/Bi2Sn2O7 heterostructure for photocatalytic degradation of tetracycline with the aid of hydrogen peroxide under visible light irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Photocatalytic degradation technology serves as an environmental-friendly mean for the removal of organic pollutants in wastewater. La2Zr2O7/Bi2Sn2O7 (LZO/BSO, cata) composite photocatalysts have been successfully fabricated through the in-situ growth approach. The phase composition, microstructure and optical property of the materials have been examined. The results indicate that the "cata + H2O2 + vis" hybrid system exhibites the optimal photocatalytic performance in the photocatalytic degradation process of tetracycline (TC). Under this optimal condition, the degradation rate of TC reaches 90% after 70 min of visible light irradiation. And the apparent rate constant of the "cata + H2O2 + vis" system is obviously higher than those of "H2O2 + vis" and "cata + H2O2″ systems. The main active species have been confirmed to include ·O2, h+ and ·OH in the degradation process of TC by the "cata + H2O2 + vis” system. The enhanced photocatalytic activity is achieved by improving the separation efficiency of charge carriers in heterojunction structure and producing more active species with the assistance of hydrogen peroxide. The effective Z-scheme-type heterojunction photocatalyst proposed in this study has the potential to be applied in the degradation of organic pollutants in wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data can be made available upon reasonable request.

References

  1. Z. Salmanzadeh-Jamadi, A. Habibi-Yangjeh, A. Khataee, Decoration of Ag/Bi nanoparticles over brown TiO2-x/AgBiO3 nanocomposites: QDs-sized photocatalysts for impressive mitigation of water pollutants. Coll. Surf. A 682, 132945 (2024). https://doi.org/10.1016/j.colsurfa.2023.132945

    Article  CAS  Google Scholar 

  2. R.H. Alzard, L.A. Siddig, A.S. Abdelhamid, T. Ramachandran, A. Alzamly, Structural analysis and photocatalytic activities of bismuth-lanthanide oxide perovskites. J. Solid State Chem. 329, 124359 (2024). https://doi.org/10.1016/j.jssc.2023.124359

    Article  CAS  Google Scholar 

  3. O. Koysuren, H.N. Koysuren, Application of CuO and its composite with polyaniline on the photocatalytic degradation of methylene blue and the Cr(VI) photoreduction under visible light. J. Sol-Gel Sci. Technol. 106, 131 (2023). https://doi.org/10.1007/s10971-023-06049-2

    Article  CAS  Google Scholar 

  4. I. Shakoor, U. Jabeen, I. Ahmad, S. Riaz, M. Tayyab, A. Syed, A.H. Bahkali, M. Riaz, R.R. Zairov, M.N. Zafar, ZnS and Fe-doped ZnS photocatalysts for improved visible light driven photocatalytic degradation of methylene blue. Inorg. Chim. Acta 560, 121837 (2024). https://doi.org/10.1016/j.ica.2023.121837

    Article  CAS  Google Scholar 

  5. M. Omar, S. Omar, A. Eltaweil, G.M. El-Subruiti, N.F. Attia, Engineering of ternary photocatalysts nanocomposites based NiS/ZrO2/CdS for boosting of photocatalytic degradation of organic pollutants. Surf. Interfaces 43, 103606 (2023). https://doi.org/10.1016/j.surfin.2023.103606

    Article  CAS  Google Scholar 

  6. V. Singh, G. Sivaramaiah, J.L. Rao, R.S. Kumaran, P.K. Singh, T.S. Kim, L.K. Kim, Luminescence and EPR studies of ultraviolet light emitting La2Zr2O7: Gd3+ phosphor powder. J. Mater. Sci. Mater. Electron. 26, 5195 (2015). https://doi.org/10.1007/s10854-015-3051-y

    Article  CAS  Google Scholar 

  7. J. Sun, B. Feng, S. Hu, X. Qin, Y. Zhang, Controlled synthesis of core-shell, yolk-shell and hollow spheres C@La2Zr2O7 via the combination of hard templating and co-precipitation method. Ceram. Int. 43, 5941 (2017). https://doi.org/10.1016/j.ceramint.2017.01.104

    Article  CAS  Google Scholar 

  8. S. Gupta, V. Subramanian, Encapsulating Bi2Ti2O7 (BTO) with reduced graphene oxide (RGO): an effective strategy to enhance photocatalytic and photo electrocatalytic activity of BTO. ACS Appl. Mater. Interface 6, 18597 (2014). https://doi.org/10.1021/am503396r

    Article  CAS  Google Scholar 

  9. D. Pakhare, V. Schwartz, V. Abdelsayed, D. Haynesc, D. Shekhawat, J. Poston, J. Spivey, Kinetic and mechanistic study of dry (CO2) reforming of methane over Rh-substituted La2Zr2O7 pyrochlores. J. Catal. 316, 78 (2014). https://doi.org/10.1016/j.jcat.2014.04.023

    Article  CAS  Google Scholar 

  10. X. Liu, L. Huang, X. Wu, Z. Wang, G. Dong, C. Wang, Y. Liu, L. Wang, Bi2Zr2O7 nanoparticles synthesized by soft-templated sol-gel methods for visible-light-driven catalytic degradation of tetracycline. Chemosphere 210, 424 (2018). https://doi.org/10.1016/j.chemosphere.2018.07.040

    Article  PubMed  CAS  Google Scholar 

  11. T. He, D. Wu, Synthesis and characterization of Ag/AgCl/Bi2Zr2O7 photocatalyst with enhanced visible-light-driven photocatalytic performance. J. Mater. Sci. Mater. Electron. 28, 7320 (2017). https://doi.org/10.1007/s10854-017-6418-4

    Article  CAS  Google Scholar 

  12. Z. Wang, Y. Wang, L. Huang, X. Liu, Y. Han, L. Wang, La2Zr2O7/rGO synthesized by one-step sol-gel method for photocatalytic degradation of tetracycline under visible-light. Chem. Eng. J. 384, 123380 (2020). https://doi.org/10.1016/j.cej.2019.123380

    Article  CAS  Google Scholar 

  13. X. Zhao, J. Yu, H. Cui, T. Wang, Preparation of direct Z-scheme Bi2Sn2O7/g-C3N4 composite with enhanced photocatalytic performance. J. Photochem. Photobiol. A 335, 130 (2017). https://doi.org/10.1016/j.jphotochem.2016.11.011

    Article  CAS  Google Scholar 

  14. X. Zhao, H. Cui, T. Wang, Novel synthesis of plasmonic Bi2Sn2O7/Ag-AgCl nanocomposite with enhanced visible light photocatalytic property. Mater. Res. Bull. 95, 392 (2017). https://doi.org/10.1016/j.materresbull.2017.07.005

    Article  CAS  Google Scholar 

  15. C. Hu, J. Zhuang, L. Zhong, Y. Zhong, D. Wang, H. Zhou, Significantly enhanced photocatalytic activity of visible light responsive AgBr/Bi2Sn2O7 heterostructured composites. Appl. Surf. Sci. 426, 1173 (2017). https://doi.org/10.1016/j.apsusc.2017.07.167

    Article  CAS  Google Scholar 

  16. Y. Xing, W. Que, X. Yin, Z. He, X. Liu, Y. Yang, J. Shao, L. Kong, In2O3/Bi2Sn2O7 heterostructured nanoparticles with enhanced photocatalytic activity. Appl. Surf. Sci. 387, 36 (2016). https://doi.org/10.1016/j.apsusc.2016.06.057

    Article  CAS  Google Scholar 

  17. F. Li, Y. Wang, K. Wang, L. Zhang, G. Han, M. Ye, W. Shi, S. Zhang, L. Jin, J. Feng, Enhanced photocatalytic degradation of tetracycline by a H2O2-assisted Bi3NbO7/Bi2Sn2O7 composite under visible light. Phys. Chem. Chem. Phys. 25, 4553 (2023). https://doi.org/10.1039/D2CP05609G

    Article  PubMed  CAS  Google Scholar 

  18. G. Gnanamoorthy, S. Muthamizh, K. Sureshbabu, S. Munusamy, A. Padmanaban, A. Kaaviya, R. Nagarajan, A. Stephen, V. Narayanan, Photocatalytic properties of amine functionalized Bi2Sn2O7/rGO nanocomposites. J. Phys. Chem. Solids 118, 21 (2018). https://doi.org/10.1016/j.jpcs.2018.02.042

    Article  CAS  Google Scholar 

  19. S. Heidari, M. Haghighi, M. Shabani, Sono-photodeposition of Ag over sono-fabricated mesoporous Bi2Sn2O7-two dimensional carbon nitride: type-II plasmonic nano-heterojunction with simulated sunlight-driven elimination of drug. Chem. Eng. J. 389, 123418 (2020). https://doi.org/10.1016/j.cej.2019.123418

    Article  CAS  Google Scholar 

  20. S. Huang, J. Zhang, Y. Qin, F. Song, C. Du, Y. Su, Direct Z-scheme SnO2/Bi2Sn2O7 photocatalyst for antibiotics removal: insight on the enhanced photocatalytic performance and promoted charge separation mechanism. J. Photochem. Photobiol. A 404, 112947 (2021). https://doi.org/10.1016/j.jphotochem.2020.112947

    Article  CAS  Google Scholar 

  21. K. Rajagopal, M. Kathiresan, A. Rajaram, A. Natarajan, K. Natesan, Development of robust noble-metal free lanthanum, neodymium doped Li1.05Ni0.5Mn1.5O4 as a bifunctional electrocatalyst for electrochemical water splitting. RSC Adv. 13, 23829–23840 (2023). https://doi.org/10.1039/d3ra04495e

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. K. Rajagopal, P. Suresh, A. Rajaram, A. Natarajan, A novel Co-precipitation assisted Li1.05Ni0.5Mn1.40Ce0.10O4 spinel as an eloquent electrocatalyst for methanol oxidation. Chem. Phys. Lett. 823, 140518 (2023)

    Article  CAS  Google Scholar 

  23. B. Luo, D. Xu, D. Li, G. Wu, M. Wu, W. Shi, M. Chen, Fabrication of a Ag/Bi3TaO7 plasmonic photocatalyst with enhanced photocatalytic activity for degradation of tetracycline. ACS Appl. Mater. Interfaces 7, 17061–17069 (2015). https://doi.org/10.1021/acsami.5b03535

    Article  PubMed  CAS  Google Scholar 

  24. C. Liu, J. Zhang, S. Deng, P. Wang, Y. He, Direct preparation of La2Zr2O7 microspheres by cathode plasma electrolysis. J. Colloid Interface Sci. 474, 146 (2016). https://doi.org/10.1016/j.jcis.2016.04.016

    Article  PubMed  CAS  Google Scholar 

  25. J. Wu, F. Huang, X. Lü, P. Chen, D. Wan, F. Xu, Improved visible-light photocatalysis of nano-Bi2Sn2O7 with dispersed s-bands. J. Mater. Chem. 21, 3872 (2011). https://doi.org/10.1039/C0JM03252B

    Article  CAS  Google Scholar 

  26. M.T. Vandenborre, E. Husson, Comparison of the Force Field in Various Pyrochlore Families. I. The A2B2O7 Oxides. J. Solid State Chem. 50, 362–371 (1983)

    Article  CAS  Google Scholar 

  27. R.X. Silva, C.W. Paschoal, R.M. Almeida, M.C. Castro Jr., A.P. Ayala, J.T. Auletta, M.W. Lufaso, Temperature-dependent Raman spectra of Bi2Sn2O7 ceramics. Vib. Spectrosc. 64, 172–177 (2013). https://doi.org/10.1016/j.vibspec.2012.05.009

    Article  CAS  Google Scholar 

  28. M. Pokhrel, M. Alcoutlabi, Y. Mao, Optical and X-ray induced luminescence from Eu3+ doped La2Zr2O7 nanoparticles. J. Alloys Compd. 693, 719–729 (2017). https://doi.org/10.1016/j.jallcom.2016.09.218

    Article  CAS  Google Scholar 

  29. S.X. Zhang, J. Liu, H. Xie, L.J. Xu, P.P. Hu, J. Zeng, Z.Z. Li, L. Liu, W.S. Ai, P.F. Zhai, Vibrational modes in La2Zr2O7 pyrochlore irradiated with disparate electrical energy losses. Chin. Phys. B 28, 116102 (2019). https://doi.org/10.1088/1674-1056/ab43bf

    Article  CAS  Google Scholar 

  30. Q. Sun, Y. Zhao, J. Zhang, J. Sheng, Efficient degradation of antibiotics over Co (II)-doped Bi2MoO6 nanohybrid via the synergy of peroxymonosulfate activation and photocatalytic reaction under visible irradiation. Chemosphere 302, 134807 (2022). https://doi.org/10.1016/j.chemosphere.2022.134807

    Article  PubMed  CAS  Google Scholar 

  31. M.S. Nivetha, J.V. Kumar, J.S. Ajarem, A.A. Allam, V. Manikandan, R. Arulmozhi, N. Abirami, Construction of SnO2/g-C3N4 an effective nanocomposite for photocatalytic degradation of amoxicillin and pharmaceutical effluent. Environ. Res. 209, 112809 (2022). https://doi.org/10.1016/j.envres.2022.112809

    Article  PubMed  CAS  Google Scholar 

  32. C. Kaliyaperumal, S.K. Marndi, A. Sankarakumar, T. Paramasivam, Physical insights into the grain size effect on the electrical properties of nanocrystalline La2Zr2O7 pyrochlores. Ceram. Int. 49, 10663 (2023). https://doi.org/10.1016/j.ceramint.2022.11.254

    Article  CAS  Google Scholar 

  33. M. Pokhrel, A. Burger, M. Groza, Y. Mao, Enhance the photoluminescence and radioluminescence of La2Zr2O7: Eu3+ core nanoparticles by coating with a thin Y2O3 shell. Opt. Mater. 68, 35 (2017). https://doi.org/10.1016/j.optmat.2016.11.008

    Article  CAS  Google Scholar 

  34. J. Shen, H. Zeng, C. Chen, S. Xu, Novel plasmonic pn heterojunction Ag-Ag2CO3/Bi2Sn2O7 photocatalyst for Cr (VI) reduction. J. Taiwan Inst. Chem. Eng. 120, 106 (2021). https://doi.org/10.1016/j.jtice.2021.02.025

    Article  CAS  Google Scholar 

  35. F. Jahanbazi, Y. Wang, J.A. Dorman, Y. Mao, La2Zr2O7: Pr3+ nanoparticles for luminescence thermometry based on a single parameter over a wide temperature range of 620 K. J. Alloys Compd. 911, 165013 (2022). https://doi.org/10.1016/j.jallcom.2022.165013

    Article  CAS  Google Scholar 

  36. L. Wang, G. Tang, S. Liu, H. Dong, Q. Liu, J. Sun, H. Tang, Interfacial active-siterich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 428, 131338 (2022). https://doi.org/10.1016/j.cej.2021.131338

    Article  CAS  Google Scholar 

  37. Y. Zhu, J. Xu, M. Chen, Synthesis of La2Ti2O7/Bi5O7I photocatalysts with improved photocatalytic activity for degradation of CIP under visible light. Sep. Purif. Technol. 282, 120004 (2022). https://doi.org/10.1016/j.seppur.2021.120004

    Article  CAS  Google Scholar 

  38. X. Hong, X. Yu, L. Wang, Q. Liu, J. Sun, H. Tang, Lattice-Matched CoP/CoS2 Heterostructure Cocatalyst to Boost Photocatalytic H2 Generation. Inorg. Chem. 60, 12506–12516 (2021). https://doi.org/10.1021/acs.inorgchem.1c01716

    Article  PubMed  CAS  Google Scholar 

  39. Y. Tong, J. Zhu, L. Lu, X. Wang, X. Yang, Preparation and characterization of Ln2Zr2O7 (Ln= La and Nd) nanocrystals and their photocatalytic properties. J. Alloy Compd. 465, 280 (2008). https://doi.org/10.1016/j.jallcom.2007.10.097

    Article  CAS  Google Scholar 

  40. Y. Zhang, C. Xu, F. Wan, D. Zhou, L. Yang, H. Gu, J. Xiong, Synthesis of flower-like Bi2Sn2O7/Bi2WO6 hierarchical composites with enhanced visible light photocatalytic performance. J. Alloys Compd. 788, 1154 (2019). https://doi.org/10.1016/j.jallcom.2019.01.241

    Article  CAS  Google Scholar 

  41. A. Kumar, J. Manam, Observation of up conversion/down conversion luminescence and structural analysis of La2Zr2O7: Pr3+ nano phosphors. Mat. Sci. Semicon. Proc. 148, 106828 (2022). https://doi.org/10.1016/j.mssp.2022.106828

    Article  CAS  Google Scholar 

  42. P. Zhu, J. Lin, M. Liu, M. Duan, D. Luo, X. Wu, S. Zhang, Nd2Sn2O7/Bi2Sn2O7/Ag3PO4 double Z-type heterojunction for antibiotic photodegradation under visible light irradiation: mechanism, optimization and pathways. Sep. Purif. Technol. 300, 121897 (2022). https://doi.org/10.1016/j.seppur.2022.121897

    Article  CAS  Google Scholar 

  43. Y. Liu, J. Xu, M. Chen, Synthesis of direct Z-Scheme Bi3NbO7/BiOCl photocatalysts with enhanced activity for CIP degradation and Cr (VI) reduction under visible light irradiation. Sep. Purif. Technol. 276, 119255 (2021). https://doi.org/10.1016/j.seppur.2021.119255

    Article  CAS  Google Scholar 

  44. J. Jin, J. Sun, K. Lv, X. Guo, Q. Hou, J. Liu, J. Wang, Y. Bai, X. Huang, Oxygen vacancy BiO2x/Bi2WO6 synchronous coupling with Bi metal for phenol removal via visible and near-infrared light irradiation. J. Colloid Interf. Sci. 605, 342 (2022). https://doi.org/10.1016/j.jcis.2021.06.085

    Article  CAS  Google Scholar 

  45. N. He, Z. Guo, C. Zhang, Y. Yu, L. Tan, H. Luo, L. Li, J. Bahnemann, H. Chen, F. Jiang, Bifunctional 2D/2D g-C3N4/BiO2x nanosheets heterojunction for bacterial disinfection mechanisms under visible and near-infrared light irradiation. J. Hazard. Mater. 436, 129123 (2022). https://doi.org/10.1016/j.jhazmat.2022.129123

    Article  PubMed  CAS  Google Scholar 

  46. K. Qi, Y. Ye, B. Wei, M. Li, Y. Lun, X. Xie, H. Xie, N-CQDs from reed straw enriching charge over BiO2-x/BiOCl pn heterojunction for improved visible-light-driven photodegradation of organic pollutants. J. Hazard. Mater. 432, 128759 (2022). https://doi.org/10.1016/j.jhazmat.2022.128759

    Article  PubMed  CAS  Google Scholar 

  47. S. Sun, J. Zhang, C. Sheng, H. Zhong, The removal of NO from flue gas by NaOH-catalyzed H2O2 system: Mechanism exploration and primary experiment. J. Hazard. Mater. 440, 129788 (2022). https://doi.org/10.1016/j.jhazmat.2022.129788

    Article  PubMed  CAS  Google Scholar 

  48. G. Fan, J. Zhou, F. Ruan, Y. Li, H. Tian, D. Fan, Q. Chen, N. Li, The Z-scheme photocatalyst S-BiOBr/Bi2Sn2O7 with 3D/0D interfacial structure for the efficient degradation of organic pollutants. Sep. Purif. Technol. 309, 123099 (2023). https://doi.org/10.1016/j.seppur.2023.123099

    Article  CAS  Google Scholar 

  49. X. Duan, C. Yang, H. Han, Z. Song, C. Ma, S. Feng, Construction of Bi2Sn2O7/Cu2O Z-type photocatalyst with enhanced tetracycline removal under visible light. J. Mol. Liq. 403, 124693 (2024). https://doi.org/10.1016/j.molliq.2024.124693

    Article  CAS  Google Scholar 

  50. Z.H. Jabbar, B.H. Graimed, S.H. Ammar, S.M. Al-Jubouri, A.H. Abbar, M.J. M-Ridha, A.G. Taher, Rational design of novel 0D/0D Bi2Sn2O7/CeO2 in the core-shell nanostructure for boosting the photocatalytic decomposition of antibiotics in wastewater: S-type-based mechanism. Mat. Sci. Semicon. Proc. 173, 108165 (2024). https://doi.org/10.1016/j.mssp.2024.108165

    Article  CAS  Google Scholar 

  51. N. Li, Y. Niu, W. An, Z. Liu, F. Ruan, G. Fan, Unraveling charge transfer dynamics in AgBr/Bi4Ti3O12/Bi2Sn2O7 ternary S-scheme heterojunction photocatalyst. J. Colloid Interface Sci. 669, 175–189 (2024). https://doi.org/10.1016/j.jcis.2024.04.216

    Article  PubMed  CAS  Google Scholar 

  52. Y. Zhang, J. Di, X. Zhu, M. Ji, C. Chen, Y. Liu, L. Li, T. Wei, H. Li, J. Xia, Chemical bonding interface in Bi2Sn2O7/BiOBr S-scheme heterojunction triggering efficient N2 photofixation. Appl. Catal. B-Environ. 323, 122148 (2023). https://doi.org/10.1016/j.apcatb.2022.122148

    Article  CAS  Google Scholar 

  53. H. Khan, Y. Iqbal, M. Khan, Y. Zeng, Variations in the thermal conductivity of La2Zr2O7 and Gd2Zr2O7 with variable La/Gd concentrations. Phys. B 614, 413018 (2021). https://doi.org/10.1016/j.physb.2021.413018

    Article  CAS  Google Scholar 

  54. Y. Jia, S. Li, J. Gao, G. Zhu, F. Zhang, X. Shi, Y. Huang, C. Liu, Highly efficient (BiO)2CO3-BiO2-x-graphene photocatalysts: Z-Scheme photocatalytic mechanism for their enhanced photocatalytic removal of NO. Appl. Catal. B-Environ. 240, 241 (2019). https://doi.org/10.1016/j.apcatb.2018.09.005

    Article  CAS  Google Scholar 

  55. X. Li, Y. Qiu, Z. Zhu, H. Zhang, D.Q. Yin, Novel recyclable Z-scheme g-C3N4/carbon nanotubes/Bi25FeO40 heterostructure with enhanced visible-light photocatalytic performance towards tetracycline degradation. Chem. Eng. J. 429, 132130 (2022). https://doi.org/10.1016/j.cej.2021.132130

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Key Research and Development Projects of Shaanxi Province (Grant number [2023-YBGY-502] and [2023KXJ-185]), Science and Technology Projects of Beilin District of Xi'an City in Shaanxi Province (Grant number [GX2318]).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Boyu Pan, Fan Li, Liang Zhang, Kangkang Wang, Bing Xu, Wenxuan Shi, Shengnan Zhang, Lihua Jin and Jianqing Feng. The first draft of the manuscript was written by Yao Wang, Boyu Pan and Fan Li. And all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yao Wang.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Pan, B., Li, F. et al. La2Zr2O7/Bi2Sn2O7 heterostructure for photocatalytic degradation of tetracycline with the aid of hydrogen peroxide under visible light irradiation. J Mater Sci: Mater Electron 35, 1624 (2024). https://doi.org/10.1007/s10854-024-13360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13360-3

Navigation