Skip to main content
Log in

Effect of doping concentration of Cu2+ ion on ZnO thin film for detection of CO gas

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the present work, CO gas sensor based on ZnO (non-annealed) and ZnO:Cu (post-annealed) were prepared using chemical bath deposition technique using Zinc Nitrate Hexahydrate (AR), triethanolamine (AR), and sodium hydroxide (AR) as the source materials and Copper Nitrate Hexahydrate as source of the dopant and the prepared films were deposited on to the glass substrate. The prepared films were characterized by XRD (X-ray diffraction), SEM (Scanning Electron Microscope), EDAX, and UV–visible spectroscopy. The crystallite size was found to decrease on doping Cu. The formation of ZnO nanorods and nanospheroidals of ZnO:Cu was observed. The compositional analysis was done by EDAX. The band gap energy of the prepared film was found to vary from 3.9 eV to 3.6 eV. The electrical and CO gas sensing properties of thin films were also investigated. The response and recovery time of chemically synthesized ZnO thin films to CO gas were observed. A prototype based on the prepared sample is designed with the help of the Arduino UNO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sets generated during the current study may be available from the corresponding author on reasonable request. All the data are obtained after measurement of synthesized sample in the sophisticated analytical instrumentation facility centers like Physics Department, Manipur University, Department of Electronics Dhanamanjuri University, Manipur, and CRF NITK, Karnataka.

References

  1. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Semiconducting metal oxides as sensors for envi-ronmentally hazardous gases. Sens. Actuators B 160, 580–591 (2011). https://doi.org/10.1016/j.snb.2011.08.032

    Article  CAS  Google Scholar 

  2. T. Lin, X. Lv, H. Zhineng, X. Aoshu, C. Feng, Semiconductor metal oxides as chemoresistive sensors for detecting volatile organic compounds. Sensors 19, 233 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Septiani N L W, (2015) Nano Composites Multiwalled Carbon Nanotubes-Zinc Oxide (MWCNTZnO) as Toluene Gas Sensor, Thesis (Bandung: Institute Technology Bandung).

  4. B. Yuliarto, S. Julia, N.L.W. Septiani, M. Iqbal, M.F. Ramadhani, J. Nugraha, Eng. Technol. Sci. 47, 76–91 (2015)

    CAS  Google Scholar 

  5. B. Yuliarto, M.F. Ramadhani, H. Wieno, Nugraha. Int. J. Mater. Sci. Eng 2, 15–18 (2014)

    Google Scholar 

  6. M. Akbari-Saatlu, M. Procek, C. Mattsson, G. Thungström, T. Törndahl, B. Li, Su. Jiale, W. Xiong, H.H. Radamson, Nanometer-thick ZnO/SnO2 heterostructures grown on alumina forH2S sensing. ACS Appl. Nano Mater. 5, 6954–6963 (2022)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. V.S. Bhati, M. Hojamberdiev, M. Kumar, Enhanced sensing performance of ZnO nanostructures-based gas sensors: a review. Energy Rep. 6, 46–62 (2020)

    Article  Google Scholar 

  8. M.A.H. Khan, M.V. Rao, Q. Li, Recent advances in electrochemical sensors for detecting toxic gases: NO2, SO2 and H2S. Sensors 19, 905 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  9. A. Mirzaei, S.S. Kim, H.W. Kim, Resistance-based H2S gas sensors using metal oxide nanostructures: a review of recent advances. J. Hazard. Mater. 357, 314–331 (2018)

    Article  PubMed  CAS  Google Scholar 

  10. A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 229, 206–217 (2018)

    Article  CAS  Google Scholar 

  11. S. Rezabeigy, M. Behboudnia, N. Nobari, Proc. Mater. Sci. 11, 364–369 (2015)

    Article  CAS  Google Scholar 

  12. M. Jabeen, M.A. Iqbal, R.V. Kumar, M. Ahmed, M.T. Javed, Chin. Phys. Soc. 23, 018504 (2014)

    Article  Google Scholar 

  13. F. Hossein-Babaei, M. Akbari-Saatlu, Growing continuous zinc oxide layers with reproducible nanostructures on the seeded alumina substrates using spray pyrolysis. Ceram. Int. 46, 8567–8574 (2020)

    Article  CAS  Google Scholar 

  14. Y. Kang, F. Yu, L. Zhang, W. Wang, L. Chen, Y. Li, Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics 360, 115544 (2021)

    Article  CAS  Google Scholar 

  15. S. Das, V. Jayaraman, SnO2: a comprehensive review on structures and gas sensors. Prog. Mater. Sci. 66, 112–255 (2014)

    Article  CAS  Google Scholar 

  16. S. Tian, F. Yang, D. Zeng, C. Xie, Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties. J. Phys. Chem. C 116, 10586–10591 (2012)

    Article  CAS  Google Scholar 

  17. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators B 3, 147–155 (1991)

    Article  CAS  Google Scholar 

  18. Z.A. Ansari, S.G. Ansari, T. Ko, J.H. Oh, Effect of MoO3 doping and grain size on SnO2-enhancement of sensitivity and selectivity for CO and H2 gas sensing. Sens. Actuators B 87, 105–114 (2002)

    Article  CAS  Google Scholar 

  19. A. Rothschild, Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal–oxide gas sensors. J. Appl. Phys. 95, 6374–6380 (2004)

    Article  CAS  Google Scholar 

  20. T. Sun, S. Donthu, M. Sprung, K. D’Aquila, Z. Jiang, A. Srivastava, J. Wang, V.P. Dravid, Effect of Pd doping on the microstructure and gas-sensing performance of nanoporous SnOx thin films. Acta Mater. 57, 1095–1104 (2009)

    Article  CAS  Google Scholar 

  21. G. Zhang, M. Liu, Effect of particle size and dopant on properties of SnO2–basedgas sensors. Sens. Actuators B 69, 144–152 (2000)

    Article  CAS  Google Scholar 

  22. B. Sarkodie, Hu. Yanjie, W. Bi, J. Jiang, C. Li, Promotional effects of CuxO on the activity of Cu/ZnO catalyst toward efficient CO oxidation. Appl. Surf. Sci. 548, 149241 (2021)

    Article  CAS  Google Scholar 

  23. Q. Xie, Y. Zhao, H. Guo, A. Lu, X. Zhang, L. Wang, M.-S. Chen, D.-L. Peng, A.C.S.A.C.S. Appl, Mater. Interfaces 6, 421–428 (2014)

    Article  CAS  Google Scholar 

  24. R. Herrera-Rivera, J. Morales-Bautista, A.M. Pineda-Reyes et al., Influence of Cu and Ni dopants on the sensing properties of ZnO gas sensor. J. Mater. Sci. Mater. Electron. 32, 133–140 (2021). https://doi.org/10.1007/s10854-020-04725-5

    Article  CAS  Google Scholar 

  25. G. Patwari, R. Singha, B. Bodo, P.K. Kalita, Structural and optoelectronic properties of glucose capped Cu doped ZnO/ Zn(OH)2 nanosheets. Mater. Today: Proc. 5, 2197–2206 (2018)

    CAS  Google Scholar 

  26. H. Lei, R. Zheng, Y. Liu, J. Gao, X. Chen, X. Feng, cylindrical shaped ZnO combined Cu catalysts for the hydrogenation of CO2 to methanol. RSC Adv. 9, 13696 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. M. Sajjad, I. Ullah, M.I. Khan, J. Khan, M.Y. Khan, M.T. Qureshi, Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results Phys. (2018). https://doi.org/10.1016/j.rinp.2018.04.010

    Article  Google Scholar 

  28. M.P. Dasari, U. Godavarti, V. Mote, Structural, morphological, magnetic and electrical properties of Ni-doped ZnO nanoparticles synthesized by co-precipitation method. Proc. App. Ceram. 12, 100 (2018)

    Article  CAS  Google Scholar 

  29. S.J. Pearton, D.P. Norton, I.Y. Heo, T. Steiner, J. Vac Sci. Technol. B 22, 932 (2004)

    Article  CAS  Google Scholar 

  30. G. Herbeke (ed.), Polycrystalline Semiconductors: Physical Properties and Applications (Sringer-Verlag, Berlin, 1985)

    Google Scholar 

  31. D.I. Rusu, G.G. Rusu, D. Luca, Acta Phys. Polonica A. 119, 850 (2011)

    Article  CAS  Google Scholar 

  32. M.M. Ali, S.J. Abbas, A.S. Al-Kabbi, Influence of annealing temperature on the properties of ZnO nanostructures. Basrah Journal of Science 73(3), 356–375 (2019). https://doi.org/10.29072/basjs.201902014

    Article  Google Scholar 

  33. S. Worasawat, T. Masuzawa, Y. Hatanaka, Y. Neo, H. Mimura, W. Pecharapa, Synthesis and characterization of ZnO nanorods by hydrothermal method. Mater. Today Proc. 5(5):10964–10969 (2018). https://doi.org/10.1016/j.matpr.2018.01.010

    Article  CAS  Google Scholar 

  34. S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt. Mater. 34, 1946–1953 (2012)

    Article  CAS  Google Scholar 

  35. P. Chand, A. Gaur, A. Kumar, Structural and optical properties of ZnO nanoparticles synthesized at different pH values. J. Alloy. Compd. 539, 174–178 (2012)

    Article  CAS  Google Scholar 

  36. Bhubesh Chander Joshi and Aadarsh Kumar Chaudhri, Sol−gel-derived Cu-Doped ZnO thin films for optoelectronicapplications. ACS Omega 7, 21877–21881 (2022)

    Article  PubMed  Google Scholar 

  37. R.B. Bylsma, W.M. Becker, J. Kossut, U. Debska, D. Yoder-Short, Phys. Rev. B 33, 8207–8215 (1986)

    Article  CAS  Google Scholar 

  38. I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, R123–R159 (1986)

    Article  CAS  Google Scholar 

  39. B. Chander Joshi, A.K. Chaudhri, Sol-gel-derived Cu-doped ZnO thin films for optoelectronic applications. ACS Omega 7, 21877 (2022)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. H.Y. Chen, S.P. Lau, L. Chen, J. Lin, C.H.A. Huan, K.L. Tan, J.S. Pan, Synergism between Cu and Zn sites in Cu/Zn catalysts for methanol synthesis. Appl. Surf. Sci. 152, 193–199 (1999)

    Article  CAS  Google Scholar 

  41. https://docs.arduino.cc/software/ide/

Download references

Acknowledgements

The authors are thankful to Nanoelectronics Research Laboratory, Department of Electronics, D.M. College of Science, Imphal for synthesis of sample, I–V measurement, prototype design, UV measurement, and CO gas sensing measurement, Physics Department, Manipur University for XRD and EDAX measurement, and CRF NITK, Karnataka for SEM measurement.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Th. Ratanjit Singh, L. Raghumani Singh, and A. Nabachandra Singh. The first draft of the manuscript was written by Th. Ratanjit Singh and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to L. Raghumani Singh.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, T.R., Singh, L.R. & Singh, A.N. Effect of doping concentration of Cu2+ ion on ZnO thin film for detection of CO gas. J Mater Sci: Mater Electron 35, 1606 (2024). https://doi.org/10.1007/s10854-024-13338-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13338-1

Navigation