Skip to main content
Log in

Hydrothermally produced Mo-doped WO3 nanoparticles and their enhanced photocatalytic and electrochemical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, pure WO3 as well as doped with molybdenum (0, 2.5, and 5 at%) nanoparticles were successfully synthesized via sol-gel processing followed by a hydrothermal approach. The physicochemical characteristics of WO3 and Mo-doped WO3 nanoparticles were thoroughly characterized using techniques, including XPS, FESEM, HRTEM, UV–Visible, photoluminescence, cyclic voltammetry and electrochemical impedance spectroscopy. Results predicted that the insertion of Mo into the WO3 lattice had a prominent effect on morphology as well as microstructure. The addition of Mo ions in WO3 NPs narrowed the bandgap of WO3 and enhanced its ability of light absorption. Band gap energy of pure WO3 nanoparticles is reduced from 2.77 to 2.49 eV with Mo (5 at%) doping. The photocatalytic behaviour of prepared nanoparticles was investigated through the photodegradation of an organic dye (methyl orange, MO) in an aqueous solution in presence of UV–Visible light. Photocatalytic activity of WO3 nanoparticles could considerably be increased with Mo doping, which might be due to the redshift of absorption edge as well as the lowering of recombination rate of electron-hole pairs caused by the trapping of charge carriers through crystal defects. The degradation efficiency of photocatalyst against methyl orange (MO) dye is enhanced from 71.1 to 86.1% with the incorporation of Mo ions in WO3.The electrochemical properties of undoped WO3 nanoparticles, and Mo-doped WO3 nanocomposite, were investigated through cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance measurements and analysis. The specific capacitance is increased from 255.6 to 488.9 Fg−1 through Mo (5 at%) doping in WO3 NPs. The present findings recommend that 5% Mo-doped WO3 nanocomposite provides a promising direction for the development of high quality, effective and reliable photocatalytic and electrode material for organic dyes degradation and hybrid supercapacitors respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. A. Herzing, C.J. Kiely, A.F. Carley, P. Landon, G.J. Hutchings, Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science. 321, 1331–1335 (2008)

    CAS  PubMed  Google Scholar 

  2. P.S. Suchithra, C.P. Shadiya, A.P. Mohamed, P. Velusamy, S.A. kumar, One-pot microwave mediated growth of heterostructured ZnO@AlSi as a potential dual-function eco-catalyst for treating hazardous pollutants in water resources. Appl. Catal. B 130, 44–53 (2013)

    Google Scholar 

  3. N.G. Moustakas, A.G. Kontos, V. Likodimos, F. Katsaros, N. Boukos, D. Tsoutsou, A. Dimoulas, G.E. Romanos, D.D. Dionysiou, P. Falaras, Inorganic–organic core–shell titania nanoparticles for efficient visible light activated photocatalysis. Appl. Catal. B 130–131, 14–24 (2013)

    Google Scholar 

  4. S.M. El-Sheikh, G.S. Zhang, H.M. El-Hosainy, A.A. Ismail, K.E. O’Shea, P. Falaras, A.G. Kontos, D.D. Dionysiou, High performance sulfur, nitrogen and carbon doped mesoporous anatase–brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation. J. Hazard. Mater. 280, 723–733 (2014)

    CAS  PubMed  Google Scholar 

  5. M.E. Aguirre, R. Zhou, A.J. Eugene, M.I. Guzman, M.A. Grela, Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z–scheme: protecting Cu2O from photocorrosion. Appl. Catal. B 217, 485–493 (2017)

    CAS  Google Scholar 

  6. D. Raptis, V. Dracopoulos, P. Lianos, Renewable energy production by photoelectrochemical oxidation of organic wastes using WO3 photoanodes. J. Hazard. Mater. 333, 259–264 (2017)

    CAS  PubMed  Google Scholar 

  7. D.Y.C. Leung, X.L. Fu, C.F. Wang, M. Ni, M.K.H. Leung, X. Wang, X.Z. Fu, Hydrogen production over titania-based photocatalysts. Chem. Sus Chem. 3, 681–694 (2010)

    CAS  Google Scholar 

  8. K. Rajeshwar, Solar energy conversion and environmental remediation using inorganic semiconductor–liquid interfaces: the road traveled and the way forward. J. Phys. Chem. Lett. 2, 1301–1309 (2011)

    CAS  PubMed  Google Scholar 

  9. X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J. Zhang, Y. Li, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9, 2331–2336 (2009)

    CAS  PubMed  Google Scholar 

  10. F.L. Formal, M. Gratzel, K. Sivula, Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv. Funct. Mater. 20, 1099–1107 (2010)

    Google Scholar 

  11. K. Sivula, R. Zboril, F.L. Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M. Gr¨atzel, Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J. Am. Chem. Soc. 132, 7436–7444 (2010)

    CAS  PubMed  Google Scholar 

  12. J. Su, X. Feng, J.D. Sloppy, L. Guo, C.A. Grimes, Vertically aligned WO3 nanowire arrays grown directly on Transparent conducting Oxide Coated Glass: synthesis and Photoelectrochemical Properties. Nano Lett. 11, 203–208 (2010)

    PubMed  Google Scholar 

  13. R.H. Goncalves, L.D. Leite, E.R. Leite, Colloidal WO3 nanowires as a Versatile Route to prepare a Photoanode for Solar Water Splitting. Chem. Sus Chem. 5, 2341–2347 (2012)

    CAS  Google Scholar 

  14. G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J.Z. Zhang, Y. Li, Solar driven hydrogen releasing from urea and human urine. Energy Environ. Sci. 5, 6180–6187 (2012)

    CAS  Google Scholar 

  15. J.F. Yan, Q. Ye, X.L. Wang, B. Yu, F. Zhou, CdS/CdSe quantum dot co-sensitized graphene nanocomposites via polymer brush templated synthesis for potential photovoltaic applications. Nanoscale. 4, 2109–2116 (2012)

    CAS  PubMed  Google Scholar 

  16. G. Zheng, J. Wang, H. Liu, V. Murugadoss, G. Zu, H. Che, C. Lai, H. Li, T. Ding, Q. Gao, Z. Guo, Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale. 11, 18968–18994 (2019)

    CAS  PubMed  Google Scholar 

  17. Y. Wang, X. Cui, Q. Yang, J. Liu, Y. Gao, P. Sun, G. Lu, Preparation of Ag-loaded mesoporous WO3 and its enhanced NO2 sensing performance. Sens. Actuators B: Chem. 225, 544–552 (2016)

    CAS  Google Scholar 

  18. R. Yuksel, C. Durucan, H.E. Unalan, Ternary nanocomposite SWNT/WO3/PANI thin film electrodes for supercapacitors. J. Alloys Compd. 658, 183–189 (2016)

    CAS  Google Scholar 

  19. H. Yoon, M.G. Mali, M. Kim, S.S. Al-Deyab, S.S. Yoon, Electrostatic spray deposition of transparent tungsten oxide thin-film photoanodes for solar water splitting. Catal. Today. 260, 89–94 (2016)

    CAS  Google Scholar 

  20. P. Pooyodying, J.W. Ok, Y.H. Son, Y.M. Sung, Electrical and optical properties of electrochromic device with WO3:Mo film prepared by RF Magnetron Co-sputtering. Opt. Mater. 112, 110766 (2021)

    CAS  Google Scholar 

  21. X. Bai, H. Ji, P. Gao, Y. Zhang, X. Sun, Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors. Sens. Actuators B 193, 100–106 (2014)

    CAS  Google Scholar 

  22. M.A. Majeed Khan, S. Kumar, T. Ahamad, A.N. Alhazaa, Enhancement of photocatalytic and electrochemical properties of hydrothermally synthesized WO3 nanoparticles via ag loading. J. Alloys Compd. 743, 485–493 (2018)

    Google Scholar 

  23. M. Gratzel, Ultrafast colour displays. Nature. 409, 575–576 (2001)

    CAS  PubMed  Google Scholar 

  24. S.G. Kumar, K.S.R.K. Rao, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5, 3306 (2015)

    CAS  Google Scholar 

  25. G. Granquiste, Electrochromic tungsten oxide films: review of progress 1993–1998. Sol Energy Mater. Sol Cells. 60, 201–262 (2000)

    Google Scholar 

  26. J. Cao, B. Luo, H. Lin, B. Xu, S. Chen, Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties. Appl. Catal. B 111–112, 288–296 (2012)

    Google Scholar 

  27. C. Feng, S. Wang, B. Geng, Ti (Iv) doped WO3 nanocuboids: fabrication and enhanced visible-light-driven photocatalytic performance. Nanoscale. 3, 3695–3699 (2011)

    CAS  PubMed  Google Scholar 

  28. N. Li, H. Teng, L. Zhang, J. Zhou, M. Liu, Synthesis of Mo-doped WO3 nanosheets with enhanced visible-light-driven photocatalytic properties. RSC Adv. 5, 95394–95400 (2015)

    CAS  Google Scholar 

  29. F. Wang, C.D. Valentin, G. Pacchioni, Doping of WO3 for photocatalytic water splitting: hints from density functional theory. J. Phys. Chem. C 116, 8901–8909 (2012)

    CAS  Google Scholar 

  30. H. Song, Y.G. Li, Z.R. Lou, M. Xiao, L. Hu, Z.Z. Ye, L.P. Zhu, Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Appl. Catal. B 166, 112–120 (2015)

    Google Scholar 

  31. X.Y. Wang, L.X. Pang, X.Y. Hu, N.F. Han, Fabrication of ion doped WO3 photocatalysts through bulk and surface doping. J. Environ. Sci. 35, 76–82 (2015)

    Google Scholar 

  32. H. Tang, Z. Tang, J. Bright, B. Liu, X. Wang, G. Meng, N. Wu, Visible-light localized surface Plasmon Resonance of WO3 – x nanosheets and its Photocatalysis driven by Plasmonic Hot Carriers. ACS Sustainable Chem. 9, 1500–1506 (2021)

    CAS  Google Scholar 

  33. S.B. Ramakrishnan, F. Mohammadparast, A.P. Dadgar, T. Mou, T. Le, B. Wang, P.K. Jain, M. Andiappan, Photoinduced electron and energy transfer pathways and photocatalytic mechanisms in hybrid plasmonic photocatalysis. Adv. Opt. Mater. 9, 2101128 (2021)

    CAS  Google Scholar 

  34. M. Liu et al., Heterostructure nanocomposite with local surface plasmon resonance effect enhanced photocatalytic activity—a critical review. J. Phys. D 55, 043002 (2022)

    CAS  Google Scholar 

  35. Y. Liu, L. Yu, Y. Hu, C. Guo, F. Zhang, David Lou, a magnetically separable photocatalyst based on nest-like γ-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity. Nanoscale. 4, 183–187 (2012)

    CAS  PubMed  Google Scholar 

  36. M.A. Hoque, M.I. Guzman, Photocatalytic activity: experimental features to report in heterogeneous photocatalysis. Materials. 11, 1990 (2018)

    PubMed  PubMed Central  Google Scholar 

  37. A.B. Kulal, M.K. Dongare, S.B. Umbarkar, Sol–gel synthesised WO3 nanoparticles supported on mesoporous silica for liquid phase nitration of aromatics. Appl. Catal. B-Environ. 182, 142–152 (2016)

    CAS  Google Scholar 

  38. D. Nagy, I.M. Szliagyi, X.F. Fan, Photocatalytic WO3/TiO2 nanowires: WO3 polymorphs influencing the atomic layer deposition of TiO2. RSC Adv. 6, 33743–33754 (2016)

    CAS  Google Scholar 

  39. B.W. Mwakikunga, E. Sideras-Haddad, C. Arendse, M.J. Witcomb, A. Forbes, WO3 nano-spheres into W18O49 one-dimensional nano-structures through thermal annealing. J. Nanosci. Nanotechnol. 9, 3286–3294 (2009)

    CAS  PubMed  Google Scholar 

  40. S. Supothna, P. Seeharaj, S. Yoriya, M. Sriyudthsak, Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceram. Int. 33, 931–936 (2007)

    Google Scholar 

  41. P. Basnet, Y. Zhao, Superior dye adsorption capacity of amorphous WO3 sub-micrometer rods fabricated by glancing angle deposition. J. Mater. Chem. 2, 911–914 (2013)

    Google Scholar 

  42. M. Tiwari, G.C. Joshi, Starch-assisted precipitation synthesis of molybdenum-doped WO3 nanoparticles for degradation of crystal violet and rhodamine-B dye under direct sunlight irradiation. J. Solgel Sci. Technol. (2024). https://doi.org/10.1007/s10971-024-06315-x

    Article  Google Scholar 

  43. W. Li, F. Zhan, J. Li, C. Liu, Y. Yang, Y. Li, Q. Chen, Enhancing photoelectrochemical water splitting by aluminum-doped plate-like WO3 electrodes. Electrochim. Acta. 160, 57–63 (2015)

    CAS  Google Scholar 

  44. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction (Pearson, Harlow, 2014)

    Google Scholar 

  45. S.S. Kalanur, H. Seo, Influence of molybdenum doping on the structural, optical and electronic properties of WO3 for improved solar water splitting. J. Colloid Interface Sci. 509, 440–447 (2018)

    CAS  PubMed  Google Scholar 

  46. Y. Feng, C. Liu, H. Che, J. Chen, K. Huang, C. Huang, W. Shi, The highly improved visible light photocatalytic activity of BiOI through fabricating a novel p–n heterojunction BiOI/WO3 nanocomposite. Cryst. Eng. Commun. 18, 1790–1799 (2016)

    CAS  Google Scholar 

  47. S. Anandan, M. Miyauchi, Improved photocatalytic efficiency of a WO3 system by an efficient visible-light induced hole transfer. Chem. Commun. 48, 4323–4325 (2012)

    CAS  Google Scholar 

  48. Y. Liu, H. Liu, J. Ma, J. Li, Investigation on electrochemical properties of cerium doped lead dioxide anode and application for elimination of nitrophenol. Electrochim. Acta. 56, 1352–1136 (2011)

    CAS  Google Scholar 

  49. B. Jin, E. Jung, M. Ma, S. Kim, K. Zhang, J.I.I. Kim, Y. Son, J.H. Park, Solution-processed yolk–shell-shaped WO3/BiVO4 heterojunction photoelectrodes for efficient solar water splitting. J. Mater. Chem. A 6, 2585 (2018)

    CAS  Google Scholar 

  50. J.C. Tauc, Optical Properties of Solids (North-Holland, Amsterdam, 1972)

    Google Scholar 

  51. J.C. Tauc, Amorphous and Liquid Semiconductors (Plenum, New York, 1974)

    Google Scholar 

  52. X. Xie, J. Lu, E. Hums, Q. Huang, Z. Lu, Study on the deactivation of V2O5-WO3/TiO2 selective catalytic reduction catalysts through transient kinetics. Energy Fuel. 29, 3890–3896 (2015)

    CAS  Google Scholar 

  53. S.H. Mohamed, A. Anders, Physical properties of erbium implanted tungsten oxide films deposited by reactive dual magnetron sputtering. Thin Solid Films. 515, 5264–5269 (2007)

    CAS  Google Scholar 

  54. S. Hassaballa, A. Aljabri, S.H. Mohamed, F.M. El-Hossary, M. Rabia, M.A. Awad, WNxOy prepared by oxidation of tungsten nitride as alternative for the sputtered N doped WO3 photocatalyst. J. Mater. Sci. : Mater. Electron. 35, 29 (2024)

    CAS  Google Scholar 

  55. S.H. Mohamed, Thermal stability of tungsten nitride films deposited by reactive magnetron sputtering. Surf. Coat. Technol. 202, 2169–2175 (2008)

    CAS  Google Scholar 

  56. X. Chang, S. Sun, X. Xu, Z. Li, Synthesis of transition metal doped tungsten oxide nanostructures and their optical properties. Mater. Lett. 65, 1710 (2011)

    CAS  Google Scholar 

  57. M.B. Tahir, G. Nabi, N.R. Khalid, M. Rafique, Role of europium on WO3 performance under visible-light for photocatalytic activity. Ceram. Int. 44, 5705–5709 (2018)

    CAS  Google Scholar 

  58. S.V. Mohite, V.V. Ganbavle, K.Y. Rajpure, Photoelectrocatalytic activity of immobilized Yb-doped WO3 photocatalyst for degradation of methyl orange dye. J. Energy Chem. 26, 440–447 (2017)

    Google Scholar 

  59. F. Han, H. Li, L. Fu, J. Yang, Z. Liu, Synthesis of S-doped WO3 nanowires with enhanced photocatalytic performance towards dye degradation. Chem. Phys. Latt. 651, 183–187 (2016)

    CAS  Google Scholar 

  60. M. Mohanraj, I.M. Ashraf, M. Shkir, V.R.M. Reddy, W.K. Kim, Investigation on the microstructural, optical, electrical and photocatalytic properties of WO3 nanoparticles: an effect of ce doping concentration. J. Mater. Sci. : Mater. Electron. 34, 1961 (2023)

    CAS  Google Scholar 

  61. E. Ersoz, O.A. Yildirim, Green synthesis and characterization of Ag-doped ZnO nanofibers for photodegradation of MB, RhB and MO dye molecules. J. Korean Ceram. Soc. 59, 655–670 (2022)

    CAS  Google Scholar 

  62. A. Bathla, R.A. Rather, T. Poonia, B. Pal, Morphology dependent photocatalytic activity of CuO/CuO-TiO2 nanocatalyst for degradation of Methyl Orange under sunlight. J. Nanosci. Nanotechnol. 20, 3123–3130 (2020)

    CAS  PubMed  Google Scholar 

  63. S.R. Zhu, Q. Qi, W.N. Zhao, M.K. Wu, Y. Fang, K. Tao, F.Y. Yi, L. Han, Hierarchical core-shell SiO2@ PDA@BiOBr microspheres with enhanced visible-light-driven photocatalytic performance. Dalton Trans. 46, 11451–11458 (2017)

    CAS  PubMed  Google Scholar 

  64. L. Zhang, Y. Man, Y. Zhu, Effects of Mo replacement on the structure and visible-light-induced photocatalytic performances of Bi2WO6 photocatalyst. ACS Catal. 1, 841–848 (2011)

    CAS  Google Scholar 

  65. T.A.T. Do, D.T. Nguyen, T.G. Ho, H.T. Giang, Q.N. Pham, T.H.L. Nghiem, T.H. Nguyen, M.T. Man, Enhanced catalytic activity of WO3–Au nanotubes: mechanism and environmental remediation potential. J. Mater. Sci. : Mater. Electron. 34, 2246 (2023)

    Google Scholar 

  66. S. Adhikari, K.S. Chandra, D.H. Kim, G. Madras, D. Sarkar, Understanding the morphological effects of WO3 photocatalysts for the degradation of organic pollutants. Adv. Powder Technol. 29, 1591–1600 (2018)

    CAS  Google Scholar 

  67. S. Shahabuddin, N.M. Sarih, F.H. Ismail, M.M. Shahid, N.M. Huang, Synthesis of Chitosan Grafted-Polyaniline/Co3O4 Nanocube Nanocomposite and its photocatalytic activity toward Methylene Blue Dye Degradation. RSC Adv. 5, 83857–83867 (2015)

    CAS  Google Scholar 

  68. M.A.M. Khan, M. Pawar, A.A. Ansari, M. Ahamed, S. Kumar, M. Shahabuddin, Boosted photocatalytic and electrochemical activity of hydrothermally synthesized WO3 nanoparticles co–doped with transition elements (Mn, Co). Mater. Sci. Eng. B 307, 117541 (2024)

    Google Scholar 

  69. S. Bai, K. Zhang, X. Shu, S. Chen, R. Luo, D. Li, A. Chen, Carboxyl-directed hydrothermal synthesis of WO3 nanostructures and their morphology-dependent gas-sensing properties. Cryst. Eng. Commun. 16, 10210 (2014)

    CAS  Google Scholar 

  70. Y. Du, L. Zhao, Y. Zhang, Roles of TaON and Ta3N5 in the visible-Fenton-like degradation of atrazine. J. Hazard. Mater. 267, 55–61 (2014)

    CAS  PubMed  Google Scholar 

  71. M.A. Majeed Khan, R. Siwach, S. Kumar, A.N. Alhazaa, Role of Fe doping in tuning photocatalytic and photoelectrochemical properties of TiO2 for photodegradation of methylene blue. Opt. Laser Technol. 118, 170–178 (2019)

    CAS  Google Scholar 

  72. W. Li, Z. Zhang, Y. Tang, H. Bian, T.W. Ng, W. Zhang, C.S. Lee, Graphene-Nanowall‐decorated carbon felt with excellent electrochemical activity toward VO2+/VO2+ couple for all vanadium redox flow battery. Adv. Sci. 3, 1500276 (2016)

    Google Scholar 

  73. S. Kim, M. Vijayakumar, W. Wang, J. Zhang, B. Chen, Z. Nie, F. Chen, J. Hu, L. Li, Z. Yang, Chloride supporting electrolytes for all-vanadium redox flow batteries. Phys. Chem. Chem. Phys. 13, 18186 (2011)

    CAS  PubMed  Google Scholar 

  74. S. Lee, Y.W. Lee, D.H. Kwak, M.C. Kim, J.Y. Lee, D.M. Kim, K.W. Park, Improved pseudocapacitive performance of well-defined WO3 – x nanoplates. Ceram. Int. 41, 4989–4995 (2015)

    CAS  Google Scholar 

  75. C. Jo, J. Hwang, H. Song, A.H. Dao, Y.T. Kim, S.H. Lee, S.W. Hong, S. Yoon, J. Lee, Block Copolymer assisted one-pot synthesis of ordered mesoporous WO3 – x /Carbon nanocomposites as high-rate-performance electrodes for pseudocapacitors. Adv. Funct. Mater. 23, 3747 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere appreciation to the Researchers Supporting Project number (RSP2024R130), King Saud University, Riyadh, Saudi Arabia for funding research.

Author information

Authors and Affiliations

Authors

Contributions

M. A. Majeed Khan: conceptualization, methodology, validation, investigation, funding acquisition project, supervision, visualization, project administration, writing-original draft, writing-review and editing. Manjeet Pawar: formal analysis, investigation, methodology, validation, visualization, software, data curation. Anees A. Ansari: data curation, formal analysis, administration, resources, writing-review and editing. Maqusood Ahamed: methodology, validation, visualization, investigation, formal analysis. Sushil Kumar: conceptualization, methodology, data curation, investigation, formal analysis, resources. Saruchi Rani: investigation, formal analysis, software, editing.

Corresponding author

Correspondence to Sushil Kumar.

Ethics declarations

Competing interests

None.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Yes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A.M., Pawar, M., Ansari, A.A. et al. Hydrothermally produced Mo-doped WO3 nanoparticles and their enhanced photocatalytic and electrochemical properties. J Mater Sci: Mater Electron 35, 1565 (2024). https://doi.org/10.1007/s10854-024-13336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13336-3

Navigation