Skip to main content
Log in

Improving phase transformation and superconducting performance of Bi-2223 tapes via Cu addition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Chemical composition plays a significant role in high-performance Bi2Sr2Ca2Cu3O10+δ high-temperature superconductors (Bi-2223 HTS). Particularly, the Cu element can influence phase transformation, thus the superconducting performance in the Bi-2223 system. The precursor powders with different x wt.% Cu addition content (x = 0, 1, 2, and 3) were fabricated using the spray pyrolysis (SP) method. Bi-2223 single-filamentary tapes were fabricated by the powder-in-tube process (PIT) using precursor powders with different Cu addition content. The influences of Cu addition content on the phase formation, microstructural, and superconducting performance of Bi-2223 tapes have been investigated. With the increase of Cu addition content, Bi-2223 phase formation activation energy decreases from 16293.6 to 8173.2 kJ/mol. This indicates that the addition of Cu can promote the formation of Bi-2223 phase. The highest Bi-2223 phase content is obtained with 1% Cu addition. The improved inter-grain connection could be attributed to both higher phase content and larger grain size. Therefore, the maximum critical current (Ic) of 50 A at 77 K was achieved. On the other hand, the Tconset can be improved to 112 K in 2% Cu addition. The change of Tconset can be attributed to the formation of a nearly tetragonal lattice with proper composition. The results may also be applicable to the fabrication of multi-filamentary Bi-2223/Ag tapes with higher current capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Z.C. Wang, C.W. Zou, C.T. Lin, X.Y. Luo, H.T. Yan, C.H. Yin, Y. Xu, X.J. Zhou, Y.Y. Wang, J. Zhu, Science 381, 227–231 (2023). https://doi.org/10.1126/science.add3672

    Article  CAS  PubMed  Google Scholar 

  2. M. Tomita, K. Suzuki, Y. Fukumoto, A. Ishihara, M. Muralidhar, J. Appl. Phys. 109, 063909 (2011). https://doi.org/10.1063/1.3553843

    Article  CAS  Google Scholar 

  3. A. Gonzalez-Parada, F.J. Espinosa-Loza, A. Castaneda-Miranda, R. Bosch-Tous, X. Granados-Garcia, IEEE Trans. Appl. Supercond. 22, 5201004 (2012). https://doi.org/10.1109/TASC.2011.2178372

    Article  CAS  Google Scholar 

  4. A. Mercan, E. Kara, M.U. Doğan, Ş Kaya, R. Terzioğlu, Ü. Erdem, G. Yildirim, C. Terzioğlu, Mater. Today Commun. 35, 106087 (2023). https://doi.org/10.1016/j.mtcomm.2023.106087

    Article  CAS  Google Scholar 

  5. E.E. Hellstrom, Y. Yuan, J. Jiang, X.Y. Cai, D.C. Larbalestier, Y. Huang, Supercond. Sci. Technol. 18, S325 (2005). https://doi.org/10.1088/0953-2048/18/12/017

    Article  CAS  Google Scholar 

  6. Y. Takeda, G. Nishijima, K. Inoue, Y. Takano, H. Kitaguchi, Supercond. Sci. Technol. 36, 035004 (2023). https://doi.org/10.1088/1361-6668/acaccd

    Article  Google Scholar 

  7. N. Ayai, M. Kikuchi, K. Yamazaki, S. Kobayashi, S. Yamade, E. Ueno, J. Fujikami, T. Kato, K. Hayashi, K. Sato, R. Hata, J. Iihara, K. Yamaguchi, J. Shimoyama, IEEE Trans. Appl. Supercond. 17, 3075–3078 (2007). https://doi.org/10.1109/tasc.2007.897947

    Article  CAS  Google Scholar 

  8. H. Cao, S.N. Zhang, Y.R. Cui, L. Zhi, Y.F. Zhang, W. Zhang, X.Q. Liu, J.X. Liu, C.S. Li, P.X. Zhang, Ceram. Int. 50, 12212–12221 (2024). https://doi.org/10.1016/j.ceramint.2024.01.125

    Article  CAS  Google Scholar 

  9. X.Y. Lu, A. Nagata, K. Sugawara, S. Kamada, Supercond. Sci. Technol. 12, 1098–1101 (1999). https://doi.org/10.1088/0953-2048/12/12/315

    Article  CAS  Google Scholar 

  10. N.V. Vo, H.K. Liu, S.X. Dou, J. Mater. Res. 11, 1101–1107 (1996). https://doi.org/10.1557/jmr.1996.0140

    Article  CAS  Google Scholar 

  11. D.M. Spiller, C. Beduz, Y. Yang, Z. Yi, R. Riddle, K. Pham, Physica C: Supercond. 235–40, 3419–3420 (1994). https://doi.org/10.1016/0921-4534(94)91236-x

    Article  Google Scholar 

  12. S.N. Zhang, B. Shao, X.B. Tao, L.J. Ma, J.Q. Cui, X.Q. Feng, C.S. Liu, P.X. Li, J. Zhang, Mater. Sci: Mater Electron 31, 12333–12344 (2020). https://doi.org/10.1007/s10854-020-03779-9

    Article  CAS  Google Scholar 

  13. B.A. Glowacki, J. Jackiewicz, J. Mater. Sci. Lett. 15, 236–238 (1996). https://doi.org/10.1007/bf00274461

    Article  CAS  Google Scholar 

  14. K. Wu, Q.R. Feng, H. Zhang, S.Q. Feng, X. Zhu, Z.Z. Gan, Physica C: Supercond. 185, 663–664 (1991). https://doi.org/10.1016/0921-4534(91)92134-W

    Article  Google Scholar 

  15. M. Lelovic, T. Deis, N.G. Eror, U. Balachandran, P. Haldar, Supercond. Sci. Technol. 9, 965–970 (1996). https://doi.org/10.1088/0953-2048/9/11/007

    Article  CAS  Google Scholar 

  16. X.P. Chen, M. Liu, L.M. Shang, L. Mei, Q. Liu, Ceram. Int. 40, 7293–7296 (2014). https://doi.org/10.1016/j.ceramint.2013.12.070

    Article  CAS  Google Scholar 

  17. X.B. Ma, S.N. Zhang, Z.M. Yu, G.Q. Liu, L. Jiao, H.L. Zheng, C.S. Li, P.X. Zhang, J.S. Li, Rare Metal Mat. Eng. 48, 1814–1818 (2019)

    CAS  Google Scholar 

  18. Y.C. Guo, Y. Tanaka, T. Kuroda, S.X. Dou, Z.Q. Yang, Physica C: Supercond. 311, 65–74 (1999). https://doi.org/10.1016/S0921-4534(98)00625-X

    Article  CAS  Google Scholar 

  19. M. Romero-Sánchez, T. Sanchez-Mera, J. Santos-Cruz, C.E. Pérez-García, M.D. Olvera, C.R. Santillán-Rodríguez, J. Matutes-Aquino, G. Contreras-Puente, F. de Moure-Flores, Ceram. Int. 48, 16049–16053 (2022). https://doi.org/10.1016/j.ceramint.2022.02.149

    Article  CAS  Google Scholar 

  20. S.N. Zhang, X.B. Ma, B.T. Shao, L.J. Cui, G.Q. Liu, H.L. Zheng, X.Q. Liu, J.Q. Feng, C.S. Li, P.X. Zhang, Cryogenics 114, 103245 (2021). https://doi.org/10.1016/j.cryogenics.2020.103245

    Article  CAS  Google Scholar 

  21. L.D. Jiang, Y.P. Sun, X.G. Wan, K.Y. Wang, G.Y. Xu, X.H. Chen, K.Q. Ruan, J.J. Du, Physica C: Supercond. 300, 61–66 (1998). https://doi.org/10.1016/S0921-4534(98)00064-1

    Article  CAS  Google Scholar 

  22. N.D. Zhigadlo, V.V. Petrashko, Y.A. Semenenko, C. Panagopoulos, J.R. Cooper, E.K.H. Salje, Physica C: Supercond. 299, 327–337 (1998). https://doi.org/10.1016/j.matlet.2014.08.068

    Article  CAS  Google Scholar 

  23. E. Guilmeau, B. Andrzejewski, J.G. Noudem, Physica C: Supercond. 387, 382–390 (2003). https://doi.org/10.1016/S0921-4534(02)02360-2

    Article  CAS  Google Scholar 

  24. C. Terzioglu, M. Yilmazlar, O. Ozturk, E. Yanmaz, Physica C: Supercond. 423, 119–126 (2005). https://doi.org/10.1016/j.physc.2005.04.008

    Article  CAS  Google Scholar 

  25. A. Sedky, J. Phys. Chem. Solids 70, 483–488 (2009). https://doi.org/10.1016/j.jpcs.2008.12.006

    Article  CAS  Google Scholar 

  26. A. Maljuk, C.T. Lin, Crystals 6, 62 (2016). https://doi.org/10.3390/cryst6050062

    Article  CAS  Google Scholar 

  27. C.W. Kimball, W. Peng, R.H. Hannon, H. Lee, A.P. Genis, V.J. Melim, B. Dabrowski, D.R. Richards, D.G. Hinks, Physica C: Supercond. 162, 95–96 (1989). https://doi.org/10.1016/0921-4534(89)90934-9

    Article  Google Scholar 

  28. L.H. Vu, A.T. Pham, N.D. Thien, N.H. Nam, E. Riviere, Q. Nghi Pham, N.K. Man, N.T. Binh, N.T.M. Hong, L.V. Cuong, T.L. Nguyen, D.H. Tran, Ceram. Int. 49, 27614–27621 (2023). https://doi.org/10.1016/j.ceramint.2023.06.047

    Article  CAS  Google Scholar 

  29. H. Fallah-Arani, A. Sedghi, S. Baghshahi, F.S. Tehrani, R.S. Moakhar, N. Riahi-Noori, N.J. Nodoushan, J. Alloy. Compd. 900, 163201 (2022). https://doi.org/10.1016/j.jallcom.2021.163201

    Article  CAS  Google Scholar 

  30. H. Fallah-Arani, H. Koohani, F. Shahbaz Tehrani, N. Riahi Noori, N. Jafari Nodoushan, Ceram. Int. 48, 31121–31128 (2022). https://doi.org/10.1016/j.ceramint.2022.05.271

    Article  CAS  Google Scholar 

  31. S.P. Tirumala, D.F. Lee, D.M. Kroeger, K. Salama, Supercond. Sci. Technol. 11, 496–504 (1998). https://doi.org/10.1088/0953-2048/11/5/009

    Article  CAS  Google Scholar 

  32. L.J. Cui, P.X. Zhang, J.S. Li, G. Yan, Y. Feng, X.H. Liu, J.F. Li, X.F. Pan, S.N. Zhang, X.B. Ma, G.Q. Liu, Rare Metal Mat. Eng. 47, 2682–2686 (2018). https://doi.org/10.1016/S1875-5372(18)30209-1

    Article  CAS  Google Scholar 

  33. L.J. Cui, P.X. Zhang, J.S. Li, G. Yan, Y. Feng, X.H. Liu, J.F. Li, X.F. Pan, F. Yang, S.N. Zhang, X.B. Ma, G.Q. Liu, Chin. Phys. B 28, 04740 (2019). https://doi.org/10.1088/1674-1056/28/4/047401

    Article  CAS  Google Scholar 

  34. H.E. Kissinger, Anal. Chem. 29, 1702–1706 (1957). https://doi.org/10.1021/ac60131a045

    Article  CAS  Google Scholar 

  35. M. Yavuz, H. Maeda, L. Vance, H.K. Liu, S.X. Dou, J. Alloy. Compd. 281, 280–289 (1998). https://doi.org/10.1016/s0925-8388(98)00795-6

    Article  CAS  Google Scholar 

  36. S.C. Kwon, H.G. Lee, B.T. Ahn, S.W. Nam, Supercond. Sci. Technol. 8, 552–557 (1995). https://doi.org/10.1088/0953-2048/8/7/012

    Article  CAS  Google Scholar 

  37. S. Nhien, G. Desgardin, Physica C: Supercond. 272, 309–318 (1996). https://doi.org/10.1016/s0921-4534(96)00575-8

    Article  CAS  Google Scholar 

  38. A.T. Pham, D.T. Tran, L.H. Vu, N.T.T. Chu, N.D. Thien, N.H. Nam, N.T. Binh, L.T. Tai, N.T.M. Hong, N.T. Long, D.H. Tran, Ceram. Int. 48, 20996–21004 (2022). https://doi.org/10.1016/j.ceramint.2022.04.093

    Article  CAS  Google Scholar 

  39. X.P. Chen, X.W. Yu, R. Xiao, M.Y. Li, Z. Han, J. Alloy. Compd. 509, 1090–1093 (2010). https://doi.org/10.1016/j.jallcom.2010.10.003

    Article  CAS  Google Scholar 

  40. S. Ochiai, T. Nagai, H. Okuda, S.S. Oh, M. Hojo, M. Tanaka, M. Sugano, K. Osamura, Supercond. Sci. Technol. 16, 988–994 (2003). https://doi.org/10.1088/0953-2048/16/9/305

    Article  CAS  Google Scholar 

  41. S.N. Zhang, C.S. Li, X.B. Ma, J.Q. Feng, B.T. Shao, X.Q. Liu, P.X. Zhang, IEEE Trans. Appl. Supercond. 30, 6400204 (2020). https://doi.org/10.1109/tasc.2020.2978784

    Article  CAS  Google Scholar 

  42. Y. Takeda, J. Shimoyama, T. Motoki, S. Nakamura, T. Nakashima, S. Kobayashi, T. Kato, Supercond. Sci. Technol. 31, 074002 (2018). https://doi.org/10.1088/1361-6668/aac11c

    Article  CAS  Google Scholar 

  43. P. Li, G. Naderi, J. Schwartz, T. Shen, Supercond. Sci. Technol. 30, 035004 (2017). https://doi.org/10.1088/1361-6668/30/3/035004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by National Key Research and Development Program: No. 2022YFE03150101, Northwest Institute of Non-ferrous Metal Research Funding: No. YK2112, Qinchuangyuan Program: No.QCYRCXM-2022-273, Open Funding from Joint Laboratory on Power Superconducting Technology of China Southern Power Grid Co., Ltd. (Grant No. GDDKY2022KF04).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

HC: Investigation, formal analysis, writing-original draft, writing-review & editing. SZ: Methodology, funding acquisition, resources, writing-original draft, writing-review & editing. YC: Supervision, resources, writing-review & editing. JC and LZ: investigation, formal analysis, writing-original draft. HC, BS, and XL: contributed to the sample fabrication and processing. JL: Validation, data curation. CL: Project administration, supervision. PZ: Project administration, supervision.

Corresponding authors

Correspondence to Shengnan Zhang or Yaru Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study does not involve experiments with human tissue or others requiring bioethical approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Zhang, S., Chang, J. et al. Improving phase transformation and superconducting performance of Bi-2223 tapes via Cu addition. J Mater Sci: Mater Electron 35, 1478 (2024). https://doi.org/10.1007/s10854-024-13232-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13232-w

Navigation