Skip to main content
Log in

Optimizing the electrochemical properties of PPy/ZnO nanocomposites for supercapacitor electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper explores the in-situ oxidative polymerization, polypyrrole/zinc oxide (PPy/ZnO) nanocomposites with less than 10% ZnO nanoparticles and their feasibility studies for supercapacitor electrodes. Structural analysis via XRD revealed improved crystallinity and confirmed ZnO nanoparticle incorporation, with a particle size less than 20 nm. TEM images confirmed hexagonal nanoparticle morphology. Raman spectroscopy indicated shifts in characteristic peaks, suggesting nanoparticle incorporation and potential ring deformation. Thermogravimetric studies showed increased degradation temperature with ZnO addition, implying enhanced stability. Electrochemical studies demonstrated specific capacitance peaking around 100, with enhanced performance attributed to increased nanoparticle content. The energy and power densities PPy/ZnO increased with higher weight percent of ZnO. Dielectric analysis revealed fluctuating values of dielectric constant with frequency, increasing up to a threshold ZnO concentration before decreasing. AC conductivity studies further supported enhanced electrode properties with increased filler concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data of this work will be available on reasonable request.

References

  1. B.K. Saikia, S.M. Benoy, M. Bora, J. Tamuly, M. Pandey, D. Bhattacharya, A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel (2020). https://doi.org/10.1016/j.fuel.2020.118796

    Article  Google Scholar 

  2. X. Zhao, B.M. Sánchez, P.J. Dobson, P.S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3(3), 839–855 (2011). https://doi.org/10.1039/c0nr00594k

    Article  CAS  PubMed  Google Scholar 

  3. C. Abbey, G. Joos, Supercapacitor energy storage for wind energy applications. IEEE Trans. Ind. Appl. 43(3), 769–776 (2007). https://doi.org/10.1109/TIA.2007.895768

    Article  Google Scholar 

  4. J. Xue et al., High-performance ordered porous polypyrrole/ZnO films with improved specific capacitance for supercapacitors. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.123591

    Article  Google Scholar 

  5. W.K. Chee, H.N. Lim, N.M. Huang, Electrochemical properties of free-standing polypyrrole/graphene oxide/zinc oxide flexible supercapacitor. Int. J. Energy Res. 39(1), 111–119 (2015). https://doi.org/10.1002/er.3225

    Article  CAS  Google Scholar 

  6. X. Wu, M. Lian, Highly flexible solid-state supercapacitor based on graphene/polypyrrole hydrogel. J. Power. Sources 362, 184–191 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.042

    Article  CAS  Google Scholar 

  7. G.F. Chen, X.X. Li, L.Y. Zhang, N. Li, T.Y. Ma, Z.Q. Liu, A porous perchlorate-doped polypyrrole nanocoating on nickel nanotube arrays for stable wide-potential-window supercapacitors. Adv. Mater. 28(35), 7680–7687 (2016). https://doi.org/10.1002/adma.201601781

    Article  CAS  PubMed  Google Scholar 

  8. Y. Huang et al., Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22, 422–438 (2016). https://doi.org/10.1016/j.nanoen.2016.02.047

    Article  CAS  Google Scholar 

  9. R.B. Choudhary, S. Ansari, B. Purty, Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: a review. J. Energy Storage (2020). https://doi.org/10.1016/j.est.2020.101302

    Article  Google Scholar 

  10. J. Wen, B. Xu, J. Zhou, Y. Chen, Novel high-performance asymmetric supercapacitors based on nickel-cobalt composite and PPy for flexible and wearable energy storage. J. Power. Sources 402, 91–98 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.030

    Article  CAS  Google Scholar 

  11. B.S. Singu, K.R. Yoon, Highly exfoliated GO-PPy-Ag ternary nanocomposite for electrochemical supercapacitor. Electrochim. Acta 268, 304–315 (2018). https://doi.org/10.1016/j.electacta.2018.02.076

    Article  CAS  Google Scholar 

  12. D. Ahmed, M. Osman, and M. Abbas Mustafa, Synthesis and Characterization of Zinc Oxide Nanoparticles using Zinc Acetate Dihydrate and Sodium Hydroxide, 2015. [Online]. Available: http://www.aiscience.org/journal/jnnhttp://creativecommons.org/licenses/by-nc/4.0/

  13. J. Husain et al., Synthesis, characterization, and electrical conductivity of polypyrrole/zinc oxide nanocomposites. Ferroelectrics 515(1), 118–124 (2017). https://doi.org/10.1080/00150193.2017.1367223

    Article  CAS  Google Scholar 

  14. S. Jain, N. Karmakar, A. Shah, D.C. Kothari, S. Mishra, N.G. Shimpi, Ammonia detection of 1-D ZnO/polypyrrole nanocomposite: effect of CSA doping and their structural, chemical, thermal and gas sensing behavior. Appl. Surf. Sci. 396, 1317–1325 (2017). https://doi.org/10.1016/j.apsusc.2016.11.154

    Article  CAS  Google Scholar 

  15. K. Harpale et al., Multifunctional characteristics of polypyrrole-zinc oxide (PPy-ZnO) nanocomposite: field emission investigations and gas sensing application. Synth. Met. (2020). https://doi.org/10.1016/j.synthmet.2020.116542

    Article  Google Scholar 

  16. P. Nayebi, M. Babamoradi, Synthesis of ZnO nanorods/Fe3O4/polypyrrole nanocomposites for photocatalytic activity under the visible light irradiation. Optik (Stuttg) (2021). https://doi.org/10.1016/j.ijleo.2021.167497

    Article  Google Scholar 

  17. S. Fatimah, R. Ragadhita, D.F. Al Husaeni, A.B. Nandiyanto, How to calculate crystallite size from X-ray diffraction (XRD) using Scherrer method. ASEAN J. Sci. Eng. 2(1), 65–76 (2022)

    Article  Google Scholar 

  18. M.T. Ramesan, V. Santhi, In situ synthesis, characterization, conductivity studies of polypyrrole/silver doped zinc oxide nanocomposites and their application for ammonia gas sensing. J. Mater. Sci.: Mater. Electron. 28(24), 18804–18814 (2017). https://doi.org/10.1007/s10854-017-7830-5

    Article  CAS  Google Scholar 

  19. K. Ghanbari, N. Hajheidari, ZnO-CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid. Anal. Biochem. 473, 53–62 (2015). https://doi.org/10.1016/j.ab.2014.12.013

    Article  CAS  PubMed  Google Scholar 

  20. G. Han, J. Yuan, G. Shi, F. Wei, Electrodeposition of polypyrrole/multiwalled carbon nanotube composite films. Thin Solid Films 474(1–2), 64–69 (2005). https://doi.org/10.1016/j.tsf.2004.08.011

    Article  CAS  Google Scholar 

  21. D.P. Valença, K.G.B. Alves, C.P. de Melo, N. Bouchonneau, Study of the efficiency of polypyrrole/ZnO nanocomposites as additives in anticorrosion coatings. Mater. Res. (2015). https://doi.org/10.1590/1516-1439.371614

    Article  Google Scholar 

  22. S.S. Barkade et al., Ultrasound assisted miniemulsion polymerization for preparation of polypyrrole-zinc oxide (PPy/ZnO) functional latex for liquefied petroleum gas sensing. Ind. Eng. Chem. Res. 52(23), 7704–7712 (2013). https://doi.org/10.1021/ie301698g

    Article  CAS  Google Scholar 

  23. P.T. Kissinger, W.R. Heineman, Cyclic voltammetry. J. Chem. Educ. 60(9), 702 (1983)

    Article  CAS  Google Scholar 

  24. N.K. Sidhu, A.C. Rastogi, Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage. Nanoscale Res. Lett. (2014). https://doi.org/10.1186/1556-276X-9-453

    Article  PubMed  PubMed Central  Google Scholar 

  25. N. Salehifar, J.S. Shayeh, S.O. Ranaei Siadat, K. Niknam, A. Ehsani, S. Kazemi Movahhed, Electrochemical study of supercapacitor performance of polypyrrole ternary nanocomposite electrode by fast Fourier transform continuous cyclic voltammetry. RSC Adv. 5(116), 96130–96137 (2015). https://doi.org/10.1039/c5ra18694c

    Article  CAS  Google Scholar 

  26. T. Fatima, T. Sankarappa, J. S. Ashwajeet, and R. Ramanna, “Structural and Dielectric Properties of PPy/ZnO Composites,” 2015. [Online]. Available: www.ijiset.com

  27. S. Altındal Yerişkin, E. Erbilen Tanrıkulu, M. Ulusoy, Dielectric properties of MS diodes with Ag:ZnO doped PVP interfacial layer depending on voltage and frequency. Mater. Chem. Phys. (2023). https://doi.org/10.1016/j.matchemphys.2023.127788

    Article  Google Scholar 

  28. Ç. Bilkan, Y. Azizian-Kalandaragh, Ş Altındal, R. Shokrani-Havigh, Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures. Physica B 500, 154–160 (2016). https://doi.org/10.1016/j.physb.2016.08.001

    Article  CAS  Google Scholar 

  29. S. Bengi, H.G. Çetinkaya, Ş Altındal, P.E. Durmuş, Investigation of the frequency effect on electrical modulus and dielectric properties of Al/p-Si structure with %05 Bi:ZnO interfacial layer. Ionics (Kiel) (2024). https://doi.org/10.1007/s11581-024-05527-z

    Article  Google Scholar 

  30. A.E. Tezcan, A.F. Vahid, M. Ulusoy, Ş Altındal, A study on the complex dielectric (ε*)/electric-modulus (M*)/impedance (Z*), tangent-loss (tanδ), and ac conductivity (σac) of the Al/(S:DLC)/p-Si/Au (MIS)-type Schottky structures in a wide range of frequency and voltage at room temperature (RT). Physica B (2024). https://doi.org/10.1016/j.physb.2024.415959

    Article  Google Scholar 

  31. R. Megha et al., AC conductivity studies in copper decorated and zinc oxide embedded polypyrrole composite nanorods: Interfacial effects. Mater. Sci. Semicond. Process. (2020). https://doi.org/10.1016/j.mssp.2020.104963

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors acknowledges Council of Scientific and Industrial Research (CSIR), Govt. of India (Order No. 03 (1363)/16/ EMR-II dated 11.05.2016) for funding this research project. One of the authors also thankful for the support of Science Engineering Research Board (SERB), New Delhi, Govt. of India (YSS / 2014 / 000649 dated 20 November 2015), for funding the project. We gratefully acknowledge Prof.(Dr).Nandakumar Kalarikkal (Director in Charge, School of Nanoscience and Nanotechnology,Mahatma Gandhi University,Kottayam) for helping us the dielectric and AC conductivity measurements. We also acknowledge SAIF,Mahatma Gandhi University, Kottayam, for providing the WITec ALPHA 300RA Germany equipment for Raman spectroscopy. All authors certify that they have no links with or involvement in any organisation or entity that has a financial or non-financial interest in the subject matter or materials covered in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

GA: methodology, investigation, data analysis, writing—original draft. GJ: investigation, data curation. VRM: methodology, validation. GGN: formal analysis. PCT: conceptualization, review. AJ: validation, data curation. GPJ: supervision,writing—review and editing. The final version of the manuscript has been approved by all authors.

Corresponding author

Correspondence to Ginson P. Joseph.

Ethics declarations

Competing interests

The authors state that they have no known competing financial interests or personal ties that could have seemed to affect the work reported in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryadevi, G., Joseph, G., Mathew, V.R. et al. Optimizing the electrochemical properties of PPy/ZnO nanocomposites for supercapacitor electrode. J Mater Sci: Mater Electron 35, 1490 (2024). https://doi.org/10.1007/s10854-024-13225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13225-9

Navigation