Skip to main content
Log in

Transition metal oxide-based NiO–Co3O4 nanocomposite as an electrode material for the high-performance supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The simple hydrothermal approach was used to synthesize the NiO–Co3O4 nanocomposite. The effect of molar ratios of Ni and Co were studied. The synthesized nanocomposite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy. (FE-SEM) with energy dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The NiO–Co3O4 nanocomposite with 1:1 ratio exhibited high specific capacitance of 1466 F/g at a scan rate of 10 mV/s and 1018 F/g at current density of 2 A/g. Furthermore, a pouch-type symmetric supercapacitor is fabricated using NiO–Co3O4 as cathode and anode in 1 M KOH as electrolyte, which showed an excellent specific capacitance of 372 F/g at a current density of 2 A/g. The device showed high energy density of 46.511 Wh/kg at 2093 W/kg. In addition, the device showed superior cyclic stability with a retention of 93% over 1000 cycles at 5 A/g. The enhanced electrochemical performance suggested that NiO–Co3O4 nanocomposite would be an ideal candidate for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors do not have permission to share data.

References

  1. H. Wei, X. Guo, Y. Wang, Z. Zhou, H. Lv, Y. Zhao, Z. Gu, Z. Chen, Appl. Surf. Sci. 574, 151487 (2022)

    Article  CAS  Google Scholar 

  2. W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumar, A. Mehmood, E.E. Kwon, Nano Energy 52, 441 (2018)

    Article  CAS  Google Scholar 

  3. W. Liu, C. Lu, X. Wang, K. Liang, B.K. Tay, J. Mater. Chem. A 3, 624 (2015)

    Article  CAS  Google Scholar 

  4. T.-Y. Chen, L.-Y. Lin, D.-S. Geng, P.-Y. Lee, Electrochim. Acta 376, 137986 (2021)

    Article  CAS  Google Scholar 

  5. J. Wu, J. Zhou, Q. Lin, L. Luo, Q. Lu, Ceram. Int. 45, 15394 (2019)

    Article  CAS  Google Scholar 

  6. J. Qiu, Z. Bai, E. Dai, S. Liu, Y. Liu, J. Alloys Compd. 763, 966 (2018)

    Article  CAS  Google Scholar 

  7. M. Fan, B. Ren, L. Yu, D. Song, Q. Liu, J. Liu, J. Wang, X. Jing, L. Liu, Electrochim. Acta 166, 168 (2015)

    Article  CAS  Google Scholar 

  8. X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X.-B. Zhao, H.J. Fan, ACS Nano 6, 5531 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. K. Xu, R. Zou, W. Li, Y. Xue, G. Song, Q. Liu, X. Liu, J. Hu, J. Mater. Chem. A 1, 9107 (2013)

    Article  CAS  Google Scholar 

  10. R. Kumar, S.M. Youssry, H.M. Soe, M.M. Abdel-Galeil, G. Kawamura, A. Matsuda, J. Energy Storage 30, 101539 (2020)

    Article  Google Scholar 

  11. R. Priyadharsini, S. ShyamalDas, M. Venkateshwarlu, K. Deenadayalan, C. Manoharan, Inorg. Chem. Commun. 140, 109406 (2022)

    Article  CAS  Google Scholar 

  12. S. Li, Y. Duan, Y. Teng, N. Fan, Y. Huo, Appl. Surf. Sci. 478, 247 (2019)

    Article  CAS  Google Scholar 

  13. P. Jiang, Q. Wang, J. Dai, W. Li, Z. Wei, Mater. Lett. 188, 69 (2017)

    Article  CAS  Google Scholar 

  14. R.M. Obodo, S.M. Mbam, H.E. Nsude, M. Ramzan, S.C. Ezike, I. Ahmad, M. Maaza, F.I. Ezema, Appl. Surf. Sci. Adv. 9, 100254 (2022)

    Article  Google Scholar 

  15. K. Wang, Z. Zhang, X. Shi, H. Wang, Y. Lu, X. Ma, RSC Adv. 5, 1943 (2015)

    Article  CAS  Google Scholar 

  16. P.P. Sahay, J. Alloys Compd. 867, 159022 (2021)

    Article  CAS  Google Scholar 

  17. Z. Fang, S. ur Rehman, M. Sun, Y. Yuan, S. Jin, H. Bi, J. Mater. Chem. 6, 21131 (2018)

    Article  CAS  Google Scholar 

  18. S. Chandra Sekhar, G. Nagaraju, J.S. Yu, Nano Energy 48, 81 (2018)

    Article  CAS  Google Scholar 

  19. X.W. Wang, D.L. Zheng, P.Z. Yang, X.E. Wang, Q.Q. Zhu, P.F. Ma, L.Y. Sun, Chem. Phys. Lett. 667, 260 (2017)

    Article  CAS  Google Scholar 

  20. A.S. Ahmed, J. Gupta, A.H. Anwer, M.Z. Khan, Phys. B Condens. Matter 629, 413623 (2022)

    Article  CAS  Google Scholar 

  21. V.U. Shankar, P. Suganya, D. Govindarajan, B. Ranjith, C. Saravanan, P. Muthuraja, J. Energy Storage 69, 107955 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express special thanks of gratitude to Centralized instrumentation and service laboratory, Annamalai university for providing their lab facilities.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

K. Athira: conceptualization, methodology, writing—original draft. S. Dhanapandian: supervision, writing—review & editing. S. Suthakaran: Data curation, visualization. A. Dinesh, Manikandan Ayyar: writing—review & editing.

Corresponding authors

Correspondence to S. Dhanapandian or Manikandan Ayyar.

Ethics declarations

Conflict of interest

The authors declare that they have no known completing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athira, K., Dhanapandian, S., Suthakaran, S. et al. Transition metal oxide-based NiO–Co3O4 nanocomposite as an electrode material for the high-performance supercapacitor. J Mater Sci: Mater Electron 35, 1178 (2024). https://doi.org/10.1007/s10854-024-12962-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12962-1

Navigation