Skip to main content
Log in

Strengthened dielectric relaxation and energy efficiency of Bi(Mg0.5Hf0.5)O3-doped Ba(Ti0.8Sn0.2)O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi(Mg0.5Hf0.5)O3 (BMH) has been frequently exploited to engineer the material’s phase structure, micromorphology, dielectric, piezoelectric, and energy storage performance of BaTiO3 (BT)-based ceramics for the optimization of multifunctional dielectrics. Herein, combined with the Ba(Ti0.8Sn0.2)O3 relaxor, (1 – x)Ba(Ti0.8Sn0.2)O3xBi(Mg0.5Hf0.5)O3 (BTS-xBMH) ceramic samples were prepared through a solid-state reaction process. The micromorphology, dielectric properties, ferroelectric properties, and energy storage performance of BTS-xBMH ceramics were engineered by increasing BMH content. The addition of BMH can refine the grain size, increase the relaxation degree, raise the breakdown strength, and facilitate the production of the polar nanoregions in the BTS-xBMH ceramics. Compared to pure BTS, the energy efficiency of BTS-BMH is remarkably enhanced, which originates from the disruption of the ferroelectric long-range order owing to the BMH modification. At the maximum applied field of 100 kV/cm, the largest energy density of Wrec = 0.3 J/cm3 was realized at the composition of x = 0.05. The highest energy efficiency of η = 99% was acquired for x = 0.15 at 110 kV/cm. Moreover, the energy efficiency for x = 0.15 displays good temperature stability. These findings can guide the further optimization design of environmentally friendly BT-based ceramic capacitors for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. J.P. Shi, X.L. Chen, C.C. Sun, F.H. Pang, H.Y. Chen, X.Y. Dong, X.J. Zhou, K.G. Wang, H.F. Zhou, Superior thermal and frequency stability and decent fatigue endurance of high energy storage properties in NaNbO3-based lead-free ceramics. Ceram. Int. 46, 25731–25737 (2020)

    Article  CAS  Google Scholar 

  2. N. Luo, K. Han, F. Zhuo, L. Liu, X. Chen, B. Peng, X. Wang, Q. Feng, Y. Wei, Design for high energy storage density and temperature insensitive lead-free antiferroelectric ceramics. J. Mater. Chem. C (2019). https://doi.org/10.1039/C8TC06549G

    Article  Google Scholar 

  3. F. Yan, J. Qian, S.M. Wang, J.W. Zhai, Progress and outlook on lead-free ceramics for energy storage applications. Nano Energy 123, 109394 (2024)

    Article  CAS  Google Scholar 

  4. S.Y. Yang, D.F. Zeng, Q.P. Dong, Y. Pan, P. Nong, M.Z. Xu, X.L. Chen, X. Li, H.F. Zhou, Enhancement of energy storage performances in BaTiO3-based ceramics via introducing Bi(Mg2/3Sb1/3)O3. J. Energy Storage 78, 110102 (2024)

    Article  Google Scholar 

  5. Z. Wang, Y. Lu, L. Li, H. Li, A. Ji, D. Feteira, D. Zhou, S. Wang, I.M. Reaney, Electroceramics for high energy density capacitors: current status and future perspectives. Chem. Rev. 121(10), 6124–6172 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Z. Lu, W. Bao, G. Wang, S.-K. Sun, L. Li, J. Li, H. Yang, H. Ji, A. Feteira, D. Li, F. Xu, A.K. Kleppe, D. Wang, S.-Y. Liu, I.M. Reaney, Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics. Nano Energy 79, 105423 (2021)

    Article  CAS  Google Scholar 

  7. Z. Liu, D. Sun, G. Wang, J. Zhao, B. Zhang, D. Wang, I. Shyha, Energy storage properties in Nd-doped AgNbTaO3 lead-free antiferroelectric ceramics with Nb-site vacancies. J. Adv. Dielectr. 13, 2242006 (2023)

    Article  Google Scholar 

  8. K. Chen, W. Fu, J. Liu, T. Yan, Z. Lan, L. Fang, B. Peng, D. Wang, L. Liu, Re-entrant dipole glass like behavior and lattice dynamics of 0.65Bi(Mg1/2Ti1/2)O3–0.35PbTiO3. J. Am. Ceram. Soc. 103, 2859–2867 (2019). https://doi.org/10.1111/JACE.16956

    Article  Google Scholar 

  9. K. Chen, Q. Zhang, J. Liu, J. Wang, Z. Lan, L. Fang, C. Hu, N. Luo, B. Peng, C. Long, D. Wang, L. Liu, Dynamic behavior of polar nanoregions in re-entrant relaxor 0.6Bi(Mg1/2Ti1/2)O3–0.4PbTiO3. Phys. Status Solid 219, 2100579 (2022). https://doi.org/10.1002/pssa.202100579

    Article  CAS  Google Scholar 

  10. X.Q. Chen, Z.G. Sun, H.H. Li, J.J. Liu, P. Li, J.W. Zhai, Z.B. Pan, Customizing the trade-off between breakdown strength and polarizability in BaTiO3-based ceramics for superior energy storage capability. J. Eur. Ceram. Soc. 44, 2121–2127 (2024)

    Article  CAS  Google Scholar 

  11. S.P. Balmuchu, V. Malapati, R.R. Chilaka, P. Dobbidi, Effective strategy for achieving superior energy storage performance in lead-free BaTiO3–Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3 ferroelectric ceramics. Ceram. Int. 50, 13782–13793 (2024)

    Article  CAS  Google Scholar 

  12. C.Y. Ma, R.Y. Zhang, G.W. Zhang, H.L. Du, J. Liu, R.N. Liang, Z.G. Wang, Structural evolution and energy storage properties of Bi(Zn0.5Zr0.5)O3 modified BaTiO3-based relaxation ferroelectric ceramics. J. Energy Storage 72, 108374 (2023)

    Article  Google Scholar 

  13. Z. Li, J.Y. Zhang, C.B. Wang, Z.X. Wang, N.N. Lei, L.F. Zheng, D.J. Long, X.T. Wei, J. Zhang, Z. Wang, X. Yan, T. Ai, D.W. Wang, Y.H. Niu, Phase structure, dielectric and energy storage properties of Na0.5Bi0.5TiO3-BaTiO3 ceramics with Bi(Mg2/3Nb1/3)O3 modification. Ceram. Int. 50, 38735–38742 (2023)

    Article  Google Scholar 

  14. K. Chen, X. He, J. Liu, Y. Li, Z. Lan, X. Lei, L. Fang, B. Peng, D. Wang, L. Liu, Origin of ultrahigh thermal stability on dielectric permittivity and dipole glass-like behavior of 0.4Ba0.8Ca0.2TiO3–0.6Bi(Mg0.5Ti0.5)O3 based ceramics. Mater. Res. Bull. 130, 110942 (2020)

    Article  CAS  Google Scholar 

  15. Z. Lu, G. Wang, W. Bao, J. Li, L. Li, A. Mostaed, H. Yang, H. Ji, D. Li, A. Feteira, F. Xu, D.C. Sinclair, D. Wang, S.-Y. Liu, I.M. Reaney, Superior energy density through tailored dopant strategies in multilayer ceramic capacitors. Energy Environ. Sci. 13, 2938 (2020)

    Article  CAS  Google Scholar 

  16. H. Ji, D. Wei, W. Bao, Z. Lu, G. Wang, H. Yong, A. Mostaed, L. Li, A. Feteira, S. Sun, F. Xu, D. Li, C.-J. Ma, S.-Y. Liu, I.M. Reaney, Ultrahigh energy density in short-range tilted NBT-based lead-free multilayer ceramic capacitors by nanodomain percolation. Energy Storage Mater. 38, 113 (2021)

    Article  Google Scholar 

  17. L. Cheng, Q. Wang, Q.Y. Zheng, Z.Q. Li, B. Xie, H.B. Zhang, Z.L. Yan, Enhanced energy storage properties of (Ba0.4Sr0.6)TiO3 ceramics with ultrahigh energy efficiency through doping of Bi0.2Sr0.7(Mg1/3Nb2/3)O3. Ceram. Int. 50, 19604–19612 (2024)

    Article  CAS  Google Scholar 

  18. J.L. Zha, J.X. Liu, Y.L. Yang, X.M. Lu, X.L. Hu, S. Yan, Z.J. Wu, M. Zhou, F.Z. Huang, X.N. Ying, J.S. Zhu, High energy storage performance of (1–x)Ba0.5Sr0.5TiO3xK0.5Na0.5NbO3 ceramics via a combined strategy of fine grains and multiphase polar nanoregions. Chem. Eng. J. 486, 150441 (2024)

    Article  CAS  Google Scholar 

  19. H. Zhao, D. Xu, X.Y. Duan, X.Y. Zhou, W.J. Jia, W.J. Zhao, Enhanced energy storage efficiency and temperature stability of Li2CO3-assisted BST-based ceramics by optimizing B-site dopants. Ceram. Int. 49, 39134–39146 (2023)

    Article  CAS  Google Scholar 

  20. C. Long, W. Zhou, H. Song, K. Zheng, W. Ren, H. Wu, X. Ding, L. Liu, Simultaneously realizing ultrahigh energy storage density and efficiency in BaTiO3-based dielectric ceramics by creating highly dynamic polar nanoregions and intrinsic conduction. Acta Mater. 256, 119135 (2023)

    Article  CAS  Google Scholar 

  21. K. Chen, T. Yan, J. Liu, X. Lei, L. Fang, B. Peng, S. Lanceros-Mendez, D. Wang, L. Liu, Q. Zhang, Origin of the ultra-wide temperature dielectricstability and dynamic behavior of nanoregions in 0.6Bi(Mg0.5Ti0.5)O3–0.4Ba0.8Ca0.2(Ti0.875Zr0.125)O3. J. Mater. Chem. C 10, 16407 (2022)

    Article  CAS  Google Scholar 

  22. D.-Y. Gui, H. Hao, Y. Sun, M.-H. Cao, Z.-Y. Yu, H.-X. Liu, Characterization of the dielectric relaxation for (1–x)Ba(Ti0.8Sn0.2)O3x(Na0.5Bi0.5)TiO3 (x = 0.01–0.05) ceramics by impedance spectroscopy. Solid State Commun. 151, 250–255 (2011)

    Article  CAS  Google Scholar 

  23. C. Lei, A.A. Bokov, Z.-G. Ye, Ferroelectric to relaxor crossover and dielectric phase diagram in the BaTiO3–BaSnO3 system. J. Appl. Phys. 101, 084105 (2007)

    Article  Google Scholar 

  24. W. Bak, C. Kajtoch, F. Starzyk, Dielectric properties of BaTi1–xSnxO3 solid solution. Mater. Sci. Eng. B 100, 9–12 (2003)

    Article  Google Scholar 

  25. X.B. Zhang, G.S. Chen, Z.X. Liu, M.F. Yu, C.M. Leung, C.G. Wang, D.Y. Chen, M. Zeng, Achieved excellent energy storage properties and ultrahigh power density of Ba0.85Ca0.15Zr0.1Ti0.9O3 lead-free ceramics modified by Bi(Mg0.5Hf0.5)O3. J. Alloys Compounds 968, 172171 (2023)

    Article  CAS  Google Scholar 

  26. X. Zhu, P. Shi, Y.F. Gao, R.R. Kang, J.T. Zhao, A.D. Xiao, W.J. Qiao, J.Y. Zhao, Z. Wang, X.J. Lou, Enhanced energy storage performance of 0.88(0.65Bi0.5Na0.5TiO3–0.35SrTiO3)–0.12Bi(Mg0.5Hf0.5)O3 lead-free relaxor ceramic by composition design strategy. Chem. Eng. J. 437, 135462 (2022)

    Article  CAS  Google Scholar 

  27. W. Wang, X.-G. Tang, Y.-P. Jiang, Q.-X. Liu, W.-H. Li, X.-B. Guo, Z.-H. Tang, Phase evolution, dielectric, ferroelectric, and piezoelectric properties of Bi(Mg0.5Hf0.5)O3-modified BiFeO3–BaTiO3. Mater. Today Chem. 24, 100825 (2022)

    Article  CAS  Google Scholar 

  28. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751 (1976)

    Article  CAS  Google Scholar 

  29. Z.H. Yao, H.X. Liu, Y. Liu, Z.H. Wu, Z.Y. Shen, Y. Liu, M.H. Cao, Structure and dielectric behavior of Nd-doped BaTiO3 perovskites. Mater. Chem. Phys. 109, 475–481 (2008)

    Article  CAS  Google Scholar 

  30. J. Sun, G.W. Yan, B.J. Fang, X.Y. Zhao, S. Zhang, X.L. Lu, J.N. Ding, Improving energy storage performance of barium titanate-based ceramics by doping MnO2. J. Energy Storage 78, 110007 (2024)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by Qinglin Gong. The first draft of the manuscript was written by Qinglin Gong. Ming Hu contributed to the study conception and design. Ming Hu contributed to review the draft of the manuscript. All authors commented on previous versions of the manuscript, read and approved the final manuscript.

Corresponding authors

Correspondence to Qinglin Gong or Ming Hu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Q., Hu, M. Strengthened dielectric relaxation and energy efficiency of Bi(Mg0.5Hf0.5)O3-doped Ba(Ti0.8Sn0.2)O3 ceramics. J Mater Sci: Mater Electron 35, 1144 (2024). https://doi.org/10.1007/s10854-024-12864-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12864-2

Navigation