Skip to main content

Advertisement

Log in

The effect of nanoparticle size on the structural, optical, and electrical properties of tungsten oxide prepared by laser ablation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tungsten oxide nanoparticles (WO3) were successfully produced using the Pulsed Laser Ablation method in organic solvent (2-methoxyethanol) for the first time. The ablation process was carried out using a Q-switched Nd:YAG laser of 1064 nm wavelength with different numbers of pulses 100, 200, 300, and 400 to irradiate the target. The resulting tungsten oxide nanoparticles were characterized using various techniques such as infrared spectroscopy to determine the effective groups and bonding pattern, as well as studying the morphology of those nanoparticles through an atomic force microscope. The study included also to study the optical properties, calculate the optical constants, and finally study the electrical properties of nanoparticles suspended in organic solution. The study showed that the effect of the number of pulses resulted in a difference in the size of the nanoparticles, which in turn showed a clear effect on the optical and electrical properties of tungsten oxide. A new model to understand the electrical conductivity results at different grain sizes was applied in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. W.H. Eisa, M.F. Zayed, B. Anis, L.M. Abbas, S.S. Ali, A.M. Mostafa, Clean production of powdery silver nanoparticles using Zingiber officinale: the structural and catalytic properties. J. Clean. Prod. 241, 118398 (2019). https://doi.org/10.1016/j.jclepro.2019.118398

    Article  CAS  Google Scholar 

  2. M.S. Hasanin, A.M. Mostafa, E.A. Mwafy, O.M. Darwesh, Eco-friendly cellulose nano fibers via first reported Egyptian Humicola fuscoatra Egyptia X4: isolation and characterization, environ. Nanotechnol. Monit. Manage. 10, 409–418 (2018). https://doi.org/10.1016/j.enmm.2018.10.004

    Article  Google Scholar 

  3. M.H. Mahdieh, B. Fattahi, Effects of water depth and laser pulse numbers on size properties of colloidal nanoparticles prepared by nanosecond pulsed laser ablation in liquid. Opt. Laser Technol. 75, 188–196 (2015). https://doi.org/10.1016/j.optlastec.2015.07.006

    Article  CAS  Google Scholar 

  4. M.R. Parra, F.Z. Haque, Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. J. Mater. Res. Technol. 3, 363–369 (2014)

    Article  CAS  Google Scholar 

  5. K.L. McGilvray, M.R. Decan, D. Wang, J.C. Scaiano, Facile photochemical synthesis of unprotected aqueous gold nanoparticles. J. Am. Chem. Soc. 128, 15980–15981 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. M. Sakamoto, M. Fujistuka, T. Majima, Light as a construction tool of metal nanoparticles: Synthesis and mechanism. J. Photochem. Photobiol. C 10, 33–56 (2009)

    Article  CAS  Google Scholar 

  7. D.-H. Chen, X.-R. He, Synthesis of nickel ferrite nanoparticles by sol–gel method. Mater. Res. Bull. 36, 1369–1377 (2001)

    Article  CAS  Google Scholar 

  8. J. Xu, H. Yang, W. Fu, K. Du, Y. Sui, J. Chen, Y. Zeng, M. Li, G. Zou, Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J. Magn. Magn. Mater. 309, 307–311 (2007)

    Article  CAS  Google Scholar 

  9. M. Aziz, S.S. Abbas, W.R.W. Baharom, Size-controlled synthesis of SnO2 nanoparticles by sol–gel method. Mater. Lett. 91, 31–34 (2013)

    Article  CAS  Google Scholar 

  10. H. Zeng, X. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Nanomaterials via laser ablation/irradiation in liquid: a review. Adv. Funct. Mater. 22, 1333–1353 (2012)

    Article  Google Scholar 

  11. S. Petersen, J. Jakobi, A. Hörtinger, S. Barcikowski, In-situ conjugation–tailored nanoparticle-conjugates by laser ablation in liquids. J. Laser Micro/Nanoeng. 4, 71–74 (2009)

    Article  CAS  Google Scholar 

  12. F. Stokker-Cheregi, T. Acsente, I. Enculescu, C. Grisolia, G. Dinescu, Tungsten and aluminum nanoparticles synthesized by laser ablation in liquids. Dig. J. Nanomater. Biostruct. 7, 1569–1576 (2012)

    Google Scholar 

  13. D. Riabinina, M. Chaker, J. Margot, Dependence of gold nanoparticle production on pulse duration by laser ablation in liquid media. Nanotechnology 23, 135603–135607 (2012)

    Article  PubMed  Google Scholar 

  14. J.S. Jeon, C.S. Yeh, Studies of silver nanoparticles by laser ablation method. J. Chin. Chem. Soc. 45, 721–726 (1998)

    Article  CAS  Google Scholar 

  15. M.S. Majeed, S.M. Hassan, S.A. Fadhil, AgO nanoparticles synthesis by different Nd:YAG laser pulse energies. Lasers Manuf. Mater. Process. 9, 228–240 (2022). https://doi.org/10.1007/s40516-022-00174-6

    Article  Google Scholar 

  16. A.M. Mostafa, Preparation and study of nonlinear response of embedding ZnO nanoparticles in PVA thin film by pulsed laser ablation. J. Mol. Struct. 1223, 129007 (2021). https://doi.org/10.1016/j.molstruc.2020.129007

    Article  CAS  Google Scholar 

  17. K.S. Khashan, G.M. Sulaiman, A.H. Hamad, F.A. Abdulameer, A. Hadi, Generation of NiO nanoparticles via pulsed laser ablation in deionised water and their antibacterial activity. Appl. Phys. A 123, 190 (2017)

    Article  Google Scholar 

  18. B.J. Alwan, L.G. Subhi, A.N. Abd, Preparation of colloidal silver oxide nanoparticles by pulsed laser ablation in methanol. IOP Conf. Ser.: Mater. Sci. Eng. 454, 012101 (2018). https://doi.org/10.1088/1757-899X/454/1/012101

    Article  Google Scholar 

  19. K.S. Khashan, G.M. Sulaiman, F.A. Abdulameer, Synthesis and antibacterial activity of CuO nanoparticles suspension induced by laser ablation in liquid. Arab. J. Sci. Eng. 41, 301–310 (2016). https://doi.org/10.1007/s13369-015-1733-7

    Article  CAS  Google Scholar 

  20. F. Barreca, N. Acacia, S. Spadaro, G. Currò, F. Neri, Tungsten trioxide (WO3−x) nanoparticles prepared by pulsed laser ablation in water. Mater. Chem. Phys. 127, 197–202 (2011). https://doi.org/10.1016/j.matchemphys.2011.01.059

    Article  CAS  Google Scholar 

  21. Y. Wang, X. Wang, Y. Xu, T. Chen, M. Liu, F. Niu, S. Wei, J. Liu, Simultaneous synthesis of WO3−x quantum dots and bundle-like nanowires using a one-pot template-free solvothermal strategy and their versatile applications. Small 13, 1603689 (2017). https://doi.org/10.1002/smll.201603689

    Article  CAS  Google Scholar 

  22. G. Mansoureh, V. Parisa, Synthesis of Metal Nanoparticles Using Laser Ablation Technique, Emerging Applications of Nanoparticles and Architecture Nanostructures (Elsevier, Amsterdam, 2018), pp.575–596

    Book  Google Scholar 

  23. S. Yamazaki, D. Shimizu, S. Tani, K. Honda, M. Sumimoto, K. Komaguchi, Effect of dispersants on photochromic behavior of tungsten oxide nanoparticles in methylcellulose. ACS Appl. Mater. Interfaces 10, 19889–19896 (2018). https://doi.org/10.1021/acsami.8b04875

    Article  CAS  PubMed  Google Scholar 

  24. A. Ragunathan, R. Krishnan, B.A. Kamaludeen, Stability of tungsten oxide nanoparticles in different media. J. Chem. Res. 39, 622–626 (2015). https://doi.org/10.3184/174751915X14446446579178

    Article  CAS  Google Scholar 

  25. N. Lavanya, A. Anithaa, C. Sekar, K. Asokan, A. Bonavita, N. Donato, S. Leonardi, G. Neri, Effect of gamma irradiation on structural, electrical and gas sensing properties of tungsten oxide nanoparticles. J. Alloys Compd. 693, 366–372 (2017)

    Article  CAS  Google Scholar 

  26. M. Kim, B.Y. Lee, H.C. Ham, J. Han, S.W. Nam, H.S. Lee, J.H. Park, S. Choi, Y. Shin, Facile one-pot synthesis of tungsten oxide (WO3−x) nanoparticles using sub and supercritical fluids. J. Supercrit. Fluids 111, 8–13 (2016)

    Article  CAS  Google Scholar 

  27. A. Ragunathan, R. Krishnan, B.A. Kamaludeen, Stability of tungsten oxide nanoparticles in different media. J. Chem. Res. 39, 622–626 (2015)

    Article  CAS  Google Scholar 

  28. B.A. Wasmi, A.A. Al-Amiery, A.A.H. Kadhum, A.B. Mohamad, Novel approach: tungsten oxide nanoparticle as a catalyst for malonic acid ester synthesis via ozonolysis. J. Nanomater. 2014, 1–7 (2014). https://doi.org/10.1155/2014/715457

    Article  CAS  Google Scholar 

  29. D. Fukushi, A. Sasaki, H. Hirabayashi, M. Kitano, Effect of oxygen vacancy in tungsten oxide on the photocatalytic activity for decomposition of organic materials in the gas phase. Microelectron. Reliab. 79, 1–4 (2017)

    Article  CAS  Google Scholar 

  30. Y. Zhan, Y. Liu, Q. Liu, Z. Liu, H. Yang, B. Lei, J. Zhuang, C. Hu, Size-controlled synthesis of fluorescent tungsten oxide quantum dots via one-pot ethanol-thermal strategy for ferric ions detection and bioimaging. Sens. Actuators B 255, 290–298 (2018)

    Article  CAS  Google Scholar 

  31. Z. Zhao, Y. Bai, W. Ning, J. Fan, J. Gu, H. Chang, S. Yin, Effect of surfactants on the performance of 3D morphology W18O49 by solvothermal synthesis. Appl. Surf. Sci. 471, 537–544 (2019)

    Article  CAS  Google Scholar 

  32. Z. Famili, D. Dorranian, A.H. Sari, Laser ablation-assisted synthesis of tungsten sub-oxide (W17O47) nanoparticles in water: effect of laser fluence. Opt. Quant. Electron. 52, 305 (2020). https://doi.org/10.1007/s11082-020-02425-2

    Article  CAS  Google Scholar 

  33. E.A. Mwafy, A.M. Mostafa, N.S. Awwad, H.A. Ibrahium, Catalytic activity of multi-walled carbon nanotubes decorated with tungsten trioxides nanoparticles against 4-nitrophenol. J. Phys. Chem. Solids 158, 110252 (2021). https://doi.org/10.1016/j.jpcs.2021.110252

    Article  CAS  Google Scholar 

  34. V.A. Svetlichnyi, A.V. Shabalina, I.N. Lapin, D.A. Goncharova, Metal Oxide Nanoparticle Preparation by Pulsed Laser Ablation of Metallic Targets in Liquid (IntechOpen, Rijeka, 2016). https://www.intechopen.com/chapters/52559

  35. J. Theerthagiri, K. Karuppasamy, S.J. Lee et al., Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light Sci Appl 11, 250 (2022). https://doi.org/10.1038/s41377-022-00904-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M.J. Rivera-Chaverra, E. Restrepo-Parra, C.D. Acosta-Medina, A. Mello, R. Ospina, Synthesis of oxide iron nanoparticles using laser ablation for possible hyperthermia applications. Nanomaterials (Basel, Switzerland) 10, 2099 (2020). https://doi.org/10.3390/nano10112099

    Article  CAS  PubMed  Google Scholar 

  37. A.H. Badran, A. Al-Maliki, R.K.F. Alfahed, B.A. Saeed, A.Y. Al-hmad, F.A. Al-Saymari, R.S. Elias, Synthesis, surface profile, nonlinear reflective index and photophysical properties of curcumin compound. J. Mater. Sci. Mater. Electron. 29, 10890–10903 (2018). https://doi.org/10.1007/s10854-018-9167-0

    Article  CAS  Google Scholar 

  38. R.K. Fakher Alfahed, A.S. Al-Asadi, M.F. Al-Mudhaffer, H.A. Badran, Synthesis, morphological and optical characterizations of the poly (O-toluidine)-LiCl networks thin film. Opt. Laser Technol. 133, 106524 (2021). https://doi.org/10.1016/j.optlastec.2020.106524

    Article  CAS  Google Scholar 

  39. G. Guohua, Z. Zenghai, W. Guangming, J. Xiaobo, Engineering of coloration responses of porous WO3 gasochromic films by ultraviolet irradiation. RSC Adv. 4, 30300–30307 (2014). https://doi.org/10.1039/C4RA03181D

    Article  CAS  Google Scholar 

  40. Y. Suzuko, S. Dai, T. Seiji, H. Kensuke, S. Michinori, K. Kenji, Effect of dispersants on photochromic behavior of tungsten oxide nanoparticles in methylcellulose. ACS Appl. Mater. Interfaces 10, 19889–19896 (2018). https://doi.org/10.1021/acsami.8b04875

    Article  CAS  Google Scholar 

  41. Z. Zhao, Y. Bai, W. Ning, J. Fan, Z. Gu, H. Chang, S. Yin, Effect of surfactants on the performance of 3D morphology W18O49 by solvothermal synthesis. Appl. Surf. Sci. 471, 537–544 (2019). https://doi.org/10.1016/j.apsusc.2018.12.041

    Article  CAS  Google Scholar 

  42. F.A. Mohamed, E.T. Salim, A.I. Hassan, Monoclinic tungsten trioxide (WO3) thin films using spraying pyrolysis: electrical, structural and stoichiometric ratio at different molarity. Dig. J. Nanomater. Biostruct. 17, 1029–1043 (2022)

    Article  Google Scholar 

  43. Z. Fang, S. Jiao, B. Wang, W. Yin, S. Liu, R. Gao, Z. Liu, G. Pang, S. Feng, Synthesis of reduced cubic phase WO3−x nanosheet by direct reduction of H2WO4·H2O. Mater. Today Energy 6, 146–153 (2017)

    Article  Google Scholar 

  44. M.B. Johansson, G.A. Niklasson, L. Österlund, Structural and optical properties of visible active photocatalytic WO3 thin films prepared by reactive dc magnetron sputtering. J. Mater. Res. 27, 3130–3140 (2012)

    Article  CAS  Google Scholar 

  45. S.S. Kalanur, H. Yoo, I.S. Cho, H. Seo, Effect of oxygen vacancies on the band edge properties of WO3 producing enhanced photocurrents. Electrochim. Acta 296, 517–527 (2019)

    Article  CAS  Google Scholar 

  46. A.M. Mostafa, S.A. Yousef, W.H. Eisa, M.A. Ewaida, E.A. Al-Ashkar, WO3 quantum dot: synthesis, characterization and catalytic activity. J. Mol. Struct. 1185, 351–356 (2019). https://doi.org/10.1016/j.molstruc.2019.03.007

    Article  CAS  Google Scholar 

  47. R. Mahfouz, F.J. Cadete Santos Aires, A. Brenier, B. Jacquier, J.C. Bertolini, Synthesis and physic-chemical characteristics of nanosized particles produced by laser ablation of a nickel target in water. Appl. Surf. Sci. 254, 5181–5190 (2008)

    Article  CAS  Google Scholar 

  48. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B 104, 9111–9117 (2000)

    Article  CAS  Google Scholar 

  49. H.S. Desarkar, P. Kumbhakar, A.K. Mitra, Effect of ablation time and laser fluence on the optical properties of copper nano colloids prepared by laser ablation technique. Appl. Nanosci. 2, 285–291 (2012)

    Article  CAS  Google Scholar 

  50. A. Takami, H. Kurita, S. Koda, Laser-induced size reduction of noble metal particles. J. Phys. Chem. B 103, 1226–1232 (1999)

    Article  CAS  Google Scholar 

  51. M. Fakhari, M.J. Torkamany, S.N. Mirnia, Linear and nonlinear optical properties of WO3 nanoparticles synthesized at different fluences of pulsed Nd: YAG laser. Eur. Phys. J. Appl. Phys. 84, 30401 (2018). https://doi.org/10.1051/epjap/2018180264

    Article  CAS  Google Scholar 

  52. N. Mirghassemzadeh, M. Ghamkhari, D. Dorranian, Dependence of laser ablation produced gold nanoparticles characteristics on the fluence of laser pulse. Soft Nanosci. Lett. 3, 101–106 (2013)

    Article  CAS  Google Scholar 

  53. T. He, J. Yao, Photochromic materials based on tungsten oxide. J. Mater. Chem. 17, 4547–4557 (2007)

    Article  CAS  Google Scholar 

  54. M. Rashidian, D. Dorranian, Effect of concentration on the plasmonic absorption and optical nonlinearity of gold nanoparticles. Opt. Eng. 51, 089001 (2012)

    Article  Google Scholar 

  55. S.Z. Karazhanov, Y. Zhang, A. Mascarenhas, S. Deb, L.W. Wang, Oxygen vacancy in cubic WO3 studied by first-principles pseudopotential calculation. Solid State Ion. 165, 43–49 (2003)

    Article  CAS  Google Scholar 

  56. S. Mandal, Y. Hou, M. Wang, T.D. Anthopoulos, K.L. Choy, Surface modification of hetero-phase nanoparticles for low-cost solution-processable high-k dielectric polymer nanocomposites. ACS Appl. Mater. Interfaces 15, 7371–7379 (2023). https://doi.org/10.1021/acsami.2c19559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. D. Zhang, Z. Li, K. Sugioka, Laser ablation in liquids for nanomaterial synthesis: diversities of targets and liquids. J. Phys. Photonics 3, 042002 (2021). https://doi.org/10.1088/2515-7647/ac0bfd

    Article  CAS  Google Scholar 

  58. M.S. Majeed, T.K. Hamad, E.T. Hashim, ZnO nanoparticle synthesis using ND:YAG laser for increasing hydrogen fuel cell performance. Int. J. Mech. Prod. Eng. Res. Dev. 8, 497–506 (2018)

    Google Scholar 

  59. E. Yuliza, R. Murniati, A. Rajak, M.A. Khairurrijal, Effect of particle size on the electrical conductivity of metallic particles, advances in social science, education and humanities research, in Proeedings of the 2014 International Conference on Advances in Education Technology. (2015), pp.151–154

  60. D. Mi, Z. Zhao, H. Bai, Effects of orientation and dispersion on electrical conductivity and mechanical properties of carbon nanotube/polypropylene composite. Polymers 15, 2370 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. S.A. Fadhil, J.H. Azeez, M.A. Hassan, Derivation of a new multiscale model: I. Derivation of the model for the atomic, molecular and nano material scalesIndian. J. Phys. 95, 209–217 (2021)

    CAS  Google Scholar 

  62. S.A. Fadhil, M.A. Hassan, J.H. Azeez, M.S. Majeed, Derivation of a new multiscale model: II. Deriving a modified Hall-Petch relation from the multiscale model and testing it for nano, micro, and macro materials. IOP Conf. Ser. Mater. Sci. Eng. 881, 012098 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Ali Abed Bayoud participated in conducting most of the experiments and analyzing the data. R.K. Fakher Al-Fahd interpreted the results and wrote the research. Faten Sh. Zainulabdeen participated in developing the action plan to complete the study as well as reading and revising the writing. All authors reviewed the results and approved the final case study presented here.

Corresponding author

Correspondence to R. K. Fakher Alfahed.

Ethics declarations

Conflict of interest

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayyoodh, A.A., Alfahed, R.K.F. & Zainulabdeen, F.S. The effect of nanoparticle size on the structural, optical, and electrical properties of tungsten oxide prepared by laser ablation method. J Mater Sci: Mater Electron 35, 1098 (2024). https://doi.org/10.1007/s10854-024-12821-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12821-z

Navigation