Skip to main content
Log in

Preparation of high capacity Sn2S3/Sn3S4/FeS/Fe7S8 heterostructure composite lithium-ion battery anodes from reducing agents Fe and tin-based sulfides

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tin-based sulfides, such as SnS2, have garnered attention as lithium-ion anode materials due to their layer structure and high conductivity capacity. However, during the lithium alloying/dealloying cycles, SnS2 material exhibits a rapid capacity decay due to the volume expansion, which hinders the application of SnS2. In this study, a heterostructure composite material anchored on exfoliated graphite, designated as nano SnS2S3/Sn3S4/FeS/Fe7S8 anchored on 15.0 wt% exfoliated graphite (FSS/G-15%), was synthesized by heating a mixture of inexpensive reducing agent Fe powder and SnS2 powder, followed by ball milling with 15.0 wt% commercial graphite. Experimental results demonstrated that FSS/G-15% had exhibited optimal overall Li+ storage performance, achieving approximately 1306.7, 1199.2, 1033.1, 882.3, 707.3, 507, 366.3, 255.6, and 203.5 mA hg−1 at current densities of 0.1, 0.2, 0.5, 1, 2, 4, 6, 8, and 10 Ag−1, respectively, surpassing the majority of SnS2-based anode materials. The simplicity and efficiency of the synthetic method may have potential implications in various fields in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study will be made available on request.

References

  1. T.L. Zhao, R.X. Ji, H.D. Yang, Y.X. Zhang, X.G. Sun, Y.T. Li, L. Li, R.J. Chen, Distinctive electrochemical performance of novel Fe-based Li-rich cathode material prepared by molten salt method for lithium-ion batteries. J. Energy Chem. 33, 37–45 (2019)

    Article  CAS  Google Scholar 

  2. Z.Q. Yan, Z.H. Sun, H.S. Liu, Z.H. Guo, P. Wang, L.L. Zhao, L. Qian, X.L. Wu, Heterogeneous interface in hollow ferroferric oxide/iron phosphide@carbon spheres towards enhanced Li storage. J. Colloid Interf. Sci. 617, 442–453 (2022)

    Article  CAS  Google Scholar 

  3. X.N. Lv, P.F. Wang, Y.H. Zhang, Q. Shi, F.N. Shi, Metal-organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. J. Alloy. Compd. (2022). https://doi.org/10.1007/s40820-018-0197-1

    Article  Google Scholar 

  4. Z.Q. Yan, Z.H. Sun, A.R. Li, H.S. Liu, Z.H. Guo, L. Qian, Three-dimensional porous flower-like S-doped Fe2O3 for superior lithium storage. Adv. Compos. Hybrid Mater. 4(3), 716–724 (2021)

    Article  CAS  Google Scholar 

  5. Q.C. Pan, F.H. Zheng, X. Ou, C.H. Yang, X.H. Xiong, M.L. Liu, MoS2 encapsulated SnO2-SnS/C nanosheets as a high performance anode material for lithium ion batteries. Chem. Eng. J. 316, 393–400 (2017)

    Article  CAS  Google Scholar 

  6. Y.P. Zhu, S.Y. Zhang, Y. Sun, A.J. Xie, Y.H. Shen, A novel FeC2O4-TOP derived porous pillar-like γ-Fe2O3/carbon nanocomposite with excellent performance as anode for lithium-ion batteries. Appl. Surf. Sci. 479, 1212–1219 (2019)

    Article  CAS  Google Scholar 

  7. H. Chauhan, M.K. Singh, S.A. Hashmi, S. Deka, Synthesis of surfactant-free SnS nanorods by a solvothermal route with better electrochemical properties towards supercapacitor applications. Rsc. Adv. 5(22), 17228–17235 (2015)

    Article  CAS  Google Scholar 

  8. R.K. Mishra, G.W. Baek, K. Kim, H.I. Kwon, S.H. Jin, One-step solvothermal synthesis of carnation flower-like SnS2 as superior electrodes for supercapacitor applications. Appl. Surf. Sci. 425, 923–931 (2017)

    Article  CAS  Google Scholar 

  9. J. Theerthagiri, R.A. Senthil, P. Nithyadharseni, S.J. Lee, G. Durai, P. Kuppusami, J. Madhavan, M.Y. Choi, Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage. Ceram. Int. 46(10), 14317–14345 (2020)

    Article  CAS  Google Scholar 

  10. L. Lin, Y.J. Chen, L.X. Li, H.S. Jia, R.X. Chen, H.L. Tao, First-principles study of magnetic and optical properties in dopant-doped two-dimensional SnS2. J. Magn. Magn. Mater. (2022). https://doi.org/10.1016/j.jmmm.2022.169303

    Article  Google Scholar 

  11. B. Huang, Z.F. Pan, X.Y. Su, L. An, Tin-based materials as versatile anodes for alkali (earth)-ion batteries. J. Power. Sources 395, 41–59 (2018)

    Article  CAS  Google Scholar 

  12. J.F. Li, L. Han, Y.Q. Li, J.L. Li, G. Zhu, X.J. Zhang, T. Lu, L.K. Pan, MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.122590

    Article  PubMed  PubMed Central  Google Scholar 

  13. Y. Jiang, D.Y. Song, J. Wu, Z.X. Wang, S.S. Huang, Y. Xu, Z.W. Chen, B. Zhao, J.J. Zhang, Sandwich-like SnS2/Graphene/SnS2 with expanded interlayer distance as high-rate lithium/sodium-ion battery anode materials. ACS Nano 13(8), 9100–9111 (2019)

    Article  CAS  PubMed  Google Scholar 

  14. G.Q. Li, K. Li, L. Yang, J.F. Chang, R.P. Ma, Z.J. Wu, J.J. Ge, C.P. Liu, W. Xing, Boosted performance of Ir species by employing TiN as the support toward oxygen evolution reaction. ACS Appl. Mater. Interfaces 10(44), 38117–38124 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. F.Y. Jin, Y. Wang, Topotactical conversion of carbon coated Fe-based electrodes on graphene aerogels for lithium ion storage. J. Mater. Chem. A. 3(28), 14741–14749 (2015)

    Article  CAS  Google Scholar 

  16. R. Zeng, J. Zhang, H.B. Guan, S.G. Wang, T. Qin, Y.L. Hou, D.L. Zhao, Controllable self-assembled flower-like FeS with N-doped carbon coating anchored on S-doped reduced graphene oxide as high-performance lithium-ion battery anode. J. Alloy. Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.167244

    Article  Google Scholar 

  17. X.N. Lin, Z.Y. Yang, A.R. Guo, D. Liu, Facile synthesis of FeS@C particles toward high-performance anodes for lithium-ion batteries. Nanomaterials (Basel) (2019). https://doi.org/10.3390/nano9101467

    Article  PubMed  PubMed Central  Google Scholar 

  18. L.L. Fan, X.F. Li, B. Yan, X.J. Li, D.B. Xiong, D.J. Li, H. Xu, X.F. Zhang, X.L. Sun, Amorphous SnO2/graphene aerogel nanocomposites harvesting superior anode performance for lithium energy storage. Appl. Energy 175, 529–535 (2016)

    Article  CAS  Google Scholar 

  19. H.J. Ying, S.L. Zhang, Z. Meng, Z.X. Sun, W.Q. Han, Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes. J. Mater. Chem. A. 5(18), 8334–8342 (2017)

    Article  CAS  Google Scholar 

  20. S.L. Deng, S.S. Xiong, X.Y. Wang, S.M. Wang, Z.B. Zhao, L. Hou, Y. Jiang, F.M. Gao, Surfactant-assisted RGO limited spherical FeS with superior stability and high capacity as an anode for lithium-ion batteries. Electrochim. Acta (2023). https://doi.org/10.1016/j.electacta.2022.141517

    Article  Google Scholar 

  21. X.J. Zhang, X.Y. Gao, J.F. Li, K. Hong, L. Wu, S.G. Xu, K.L. Zhang, C.Z. Liu, Z.H. Rao, In-situ synthesis of Fe7S8 nanocrystals decorated on N, S-codoped carbon nanotubes as anode material for high-performance lithium-ion batteries. J. Colloid Interfaces Sci. 579, 699–706 (2020)

    Article  CAS  Google Scholar 

  22. D.N. Lei, M. Zhang, B.H. Qu, J.M. Ma, Q.H. Li, L.B. Chen, B.A. Lu, T.H. Wang, Hierarchical tin-based microspheres: solvothermal synthesis, chemical conversion, mechanism and application in lithium ion batteries. Electrochim. Acta 106, 386–391 (2013)

    Article  CAS  Google Scholar 

  23. L.Z. Fang, J. Xu, S. Sun, B.W. Lin, Q.B. Guo, D. Luo, H. Xia, Few-layered tin sulfide nanosheets supported on reduced graphene oxide as a high-performance anode for potassium-ion batteries. Small (2019). https://doi.org/10.1002/smll.201804298

    Article  PubMed  Google Scholar 

  24. D.P. Li, L.N. Dai, X.H. Ren, F.J. Ji, Q. Sun, Y.M. Zhang, L.J. Ci, Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers. Energy Environ. Sci. 14(1), 424–436 (2021)

    Article  CAS  Google Scholar 

  25. L.X. Yin, R.L. Cheng, Q. Song, J. Yang, X.G. Kong, J.F. Huang, Y. Lin, H.B. Ouyang, Construction of nanoflower SnS2 anchored on g-C3N4 nanosheets composite as highly efficient anode for lithium ion batteries. Electrochim. Acta 293, 408–418 (2019)

    Article  CAS  Google Scholar 

  26. M. Maniyazagan, H. Zuhaib, P. Naveenkumar, H.W. Yang, W.S. Kang, S.J. Kim, Flower-like SnS2/honeycomb-like g-C3N4 composite as an anode material for high-rate, long-term lithium-ion batteries. J. Energy Storage (2023). https://doi.org/10.1016/j.est.2023.107894

    Article  Google Scholar 

  27. Y.Q. Wu, H.X. Yang, Y. Yang, H. Pu, W.J. Meng, R.Z. Gao, D.L. Zhao, SnS2/Co3S4 hollow nanocubes anchored on S-doped graphene for ultrafast and stable Na-ion storage. Small (2019). https://doi.org/10.1002/smll.201903873

    Article  PubMed  PubMed Central  Google Scholar 

  28. L. Cao, B. Zhang, X. Ou, C.H. Wang, C.L. Peng, J.F. Zhang, Interlayer expanded SnS2 anchored on nitrogen-doped graphene nanosheets with enhanced potassium storage. ChemElectroChem 6(8), 2254–2263 (2019)

    Article  CAS  Google Scholar 

  29. J.H. Li, S.B. Han, C.Y. Zhang, W. Wei, M. Gu, L.J. Meng, High-performance and reactivation characteristics of high-quality, graphene-supported SnS2 heterojunctions for a lithium-ion battery anode. ACS Appl. Mater. Interfaces 11(25), 22314–22322 (2019)

    Article  CAS  PubMed  Google Scholar 

  30. M. Cheng, Q.Q. Hu, C.F. Du, J.L. Li, W.H. Liao, J.R. Li, X.Y. Huang, An ionic liquid-assisted route towards SnS2 nanoparticles anchored on reduced graphene oxide for lithium-ion battery anode. J. Solid State Chem. (2021). https://doi.org/10.1016/j.jssc.2021.122022

    Article  Google Scholar 

  31. H.T. Huu, H.T.T. Le, T.H. Nguyen, L.N. Thi, V. Vo, W.B. Im, Facile synthesis of SnS2@g-C3N4 composites as high performance anodes for lithium ion batteries. Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2021.149312

    Article  Google Scholar 

  32. H. Yin, K.S. Hui, X. Zhao, S.L. Mei, X.W. Lv, K.N. Hui, J. Chen, Eco-friendly synthesis of self-supported N-doped Sb2S3-carbon fibers with high atom utilization and zero discharge for commercial full lithium-ion batteries. ACS Appl. Energy Mater. 3(7), 6897–6906 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22073069 and 21773082).

Author information

Authors and Affiliations

Authors

Contributions

Lichen Zhang: Methodology, Investigation, Formal Analysis, Datacuration, Writing—original draft, Writing—review & editing. Jie Lin: SEM testing and Writing – review. Xintong Wang: XRD testing. Xinxin Zhu: Material preparation. Yihong Ding: Conceptualization, Funding acquisition, Writing—review and editing. Huile Jin: Guidance on the use of some experimentalinstruments. Tianbiao Zeng: Methodology, Supervision, Project administration, Analysis, Writing-review.

Corresponding author

Correspondence to Tianbiao Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10497 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Lin, J., Wang, X. et al. Preparation of high capacity Sn2S3/Sn3S4/FeS/Fe7S8 heterostructure composite lithium-ion battery anodes from reducing agents Fe and tin-based sulfides. J Mater Sci: Mater Electron 35, 1002 (2024). https://doi.org/10.1007/s10854-024-12748-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12748-5

Navigation