Skip to main content
Log in

RF magnetron sputtering of Zn2SnO4 thin films: optimising microstructure, optical and electrical properties for photovoltaics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zn2SnO4 (ZTO) is a potential n-type material that can be used as a buffer layer in thin-film solar cells. In this work, ZTO thin films were deposited on silicon (100) and quartz (Y-cut) substrates using RF magnetron sputtering from a ceramic target prepared by the mixture of Tin Oxide (SnO2) and Zinc Oxide (ZnO) in a 2:1 ratio. The effects of RF power, deposition time and post-deposition annealing temperature on the structural, optical, morphological, and electrical properties of the as-grown films were studied with various techniques. The phase formation of crystalline inverse spinel cubic ZTO thin film has been verified by characterising through X-ray diffraction and Raman spectrometer. X-ray photoelectron spectroscopy was used to confirm the oxidation state of the films. Optical analysis carried out by a UV–visible spectrophotometer exhibits that the film has a high transmittance value of 80–85% in the visible range. The optical band gap of the films was calculated and compared. Surface characteristics such as particle size, shape, and roughness have been investigated using atomic force microscopy, and the film’s surface shows a uniformly smooth nature. Energy dispersive X-ray analysis further confirms the presence of Zinc (Zn), Tin (Sn) and Oxygen (O) elements in the deposited films. The electrical properties of the optimised ZTO films were analysed through hall measurements, unveiling the n-type conductivity of the films with elevated carrier concentration and mobility, underscoring their suitability for application in thin-film solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets utilised or examined in the present study can be obtained upon a reasonable request from the corresponding author.

References

  1. J.A. Spencer, A.L. Mock, A.G. Jacobs, M. Schubert, Y. Zhang, M.J. Tadjer, Appl. Phys. Rev. (2022). https://doi.org/10.1063/5.0078037

    Article  Google Scholar 

  2. S. Ge, D. Sang, L. Zou, Y. Yao, C. Zhou, H. Fu, H. Xi, J. Fan, L. Meng, C. Wang, Nanomater 13, 1141 (2023). https://doi.org/10.3390/NANO13071141

    Article  CAS  Google Scholar 

  3. S. Sun, S. Liang, J. Mater. Chem. A 5, 20534 (2017). https://doi.org/10.1039/C7TA06221D

    Article  CAS  Google Scholar 

  4. X. Li, Z. Su, S. Venkataraj, S.K. Batabyal, L.H. Wong, Sol. Energy Mater. Sol. Cells 157, 101 (2016). https://doi.org/10.1016/J.SOLMAT.2016.05.032

    Article  CAS  Google Scholar 

  5. N. Ahmad, Y. Zhao, F. Ye, J. Zhao, S. Chen, Z. Zheng, P. Fan, C. Yan, Y. Li, Z. Su, X. Zhang, G. Liang, Adv. Sci. 10, 2302869 (2023). https://doi.org/10.1002/ADVS.202302869

    Article  CAS  Google Scholar 

  6. B. Lin, Q. Sun, C. Zhang, H. Deng, W. Xie, J. Tang, Q. Zheng, J. Wu, H. Zhou, S. Cheng, Energy Technol. 10, 2200571 (2022). https://doi.org/10.1002/ente.202200571

    Article  CAS  Google Scholar 

  7. N.M. Martin, T. Törndahl, M. Babucci, F. Larsson, K. Simonov, D. Gajdek, L.R. Merte, H. Rensmo, C. Platzer-Björkman, ACS Appl. Energy Mater. 5, 13971 (2022). https://doi.org/10.1021/acsaem.2c02579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. W. Pan, X. Zhou, Y. Li, W. Dong, L. Lu, S. Zhang, Mater. Sci. Semicond. Process. 151, 106998 (2022). https://doi.org/10.1016/J.MSSP.2022.106998

    Article  CAS  Google Scholar 

  9. W. Zhang, G. Chen, H. Wang, P. Chen, B. Zhang, D. Zhang, J. Mater. Sci. Mater. Electron. 32, 20139 (2021). https://doi.org/10.1007/s10854-021-06483-4

    Article  CAS  Google Scholar 

  10. M.A. Alpuche-Aviles, Y. Wu, J. Am. Chem. Soc. 131, 3216 (2009). https://doi.org/10.1021/ja806719x

    Article  CAS  PubMed  Google Scholar 

  11. T.J. Coutts, D.L. Young, X. Li, W.P. Mulligan, X. Wu, D.L. Young, X. Li, W.P. Mulligan, X. Wu, J. Vac. Sci. Technol. A 18, 2646 (2000). https://doi.org/10.1116/1.1290371

    Article  CAS  Google Scholar 

  12. M. Ben Ali, F. Barka-Bouaifel, H. Elhouichet, B. Sieber, A. Addad, L. Boussekey, M. Férid, R. Boukherroub, J. Colloid Interface Sci. 457, 360 (2015). https://doi.org/10.1016/J.JCIS.2015.07.015

    Article  CAS  PubMed  Google Scholar 

  13. R. Ramarajan, M. Kovendhan, D.T. Phan, K. Thangaraju, R. Ramesh Babu, K.J. Jeon, D. Paul Joseph, Appl. Surf. Sci. 449, 68 (2018). https://doi.org/10.1016/J.APSUSC.2018.01.029

    Article  CAS  Google Scholar 

  14. S. Yu, W. Xu, H. Zhu, W. Qiu, Q. Fu, L. Kong, J. Alloys Compd. 883, 160622 (2021). https://doi.org/10.1016/J.JALLCOM.2021.160622

    Article  CAS  Google Scholar 

  15. X. Cui, K. Sun, J. Huang, C.Y. Lee, C. Yan, H. Sun, Y. Zhang, F. Liu, M.A. Hossain, Y. Zakaria, L.H. Wong, M. Green, B. Hoex, X. Hao, Chem. Mater. 30, 7860 (2018). https://doi.org/10.1021/acs.chemmater.8b03398

    Article  CAS  Google Scholar 

  16. Y. Di Luo, M. Dong Chen, R. Tang, M. Azam, S. Chen, Z.H. Zheng, Z.H. Su, P. Fan, H.L. Ma, G.X. Liang, X.H. Zhang, Sol. Energy Mater. Sol. Cells 240, 111721 (2022). https://doi.org/10.1016/J.SOLMAT.2022.111721

    Article  Google Scholar 

  17. T. Ericson, F. Larsson, T. Törndahl, C. Frisk, J. Larsen, V. Kosyak, C. Hägglund, S. Li, C. Platzer-Björkman, Sol. RRL 1, 1700001 (2017). https://doi.org/10.1002/SOLR.201700001

    Article  Google Scholar 

  18. J.K. Larsen, F. Larsson, T. Törndahl, N. Saini, L. Riekehr, Y. Ren, A. Biswal, D. Hauschild, L. Weinhardt, C. Heske, C. Platzer-Björkman, Adv. Energy Mater. 9, 1900439 (2019). https://doi.org/10.1002/AENM.201900439

    Article  Google Scholar 

  19. L. Grenet, F. Emieux, J. Andrade-Arvizu, E. De Vito, G. Lorin, Y. Sánchez, E. Saucedo, F. Roux, ACS Appl. Energy Mater. 3, 1883 (2020). https://doi.org/10.1021/acsaem.9b02329

    Article  CAS  Google Scholar 

  20. S. Mihaiu, A. Toader, I. Atkinson, O.C. Mocioiu, C. Hornoiu, V.S. Teodorescu, M. Zaharescu, Ceram. Int. 41, 4936 (2015). https://doi.org/10.1016/j.ceramint.2014.12.056

    Article  CAS  Google Scholar 

  21. S. Mihaiu, I. Atkinson, O. Mocioiu, A. Toader, E. Tenea, M. Zaharescu, Rev. Roum. Chim. 56, 465 (2011)

    CAS  Google Scholar 

  22. H.E. Swanson, Standard X-ray diffraction powder patterns (National Bureau of Standards Monograph, 1972)

    Book  Google Scholar 

  23. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  24. G.J. McCarthy, J.M. Welton, G.J. McCarthy, J.M. Welton, Powder Diffr. 4, 156 (1989). https://doi.org/10.1017/S0885715600016638

    Article  CAS  Google Scholar 

  25. M. Björck, G. Andersson, J. Appl. Cryst. 40, 1174 (2007). https://doi.org/10.1107/S0021889807045086

    Article  CAS  Google Scholar 

  26. M.H. Kabir, M.M. Ali, M.A. Kaiyum, M.S. Rahman, J. Phys. Commun. (2019). https://doi.org/10.1088/2399-6528/ab496f

    Article  Google Scholar 

  27. S.S. Mali, C.S. Shim, C.K. Hong, Sci. Rep. 5, 11424 (2015). https://doi.org/10.1038/srep11424

    Article  PubMed  PubMed Central  Google Scholar 

  28. M.V. Nikolic, N.J. Labus, V.P. Pavlovic, S. Markovic, M.D. Lukovic, N.B. Tadic, J.D. Vujancevic, B. Vlahovic, V.B. Pavlovic, J. Electroceram. 45, 135 (2020). https://doi.org/10.1007/s10832-021-00232-z

    Article  CAS  Google Scholar 

  29. S.A. Redfern, R.J. Harrison, H.O. Stc, D.R. Wood, Am. Min. 84, 299 (1999). https://doi.org/10.2138/am-1999-0313

    Article  CAS  Google Scholar 

  30. V. Šepelák, S.M. Becker, I. Bergmann, S. Indris, M. Scheuermann, A. Feldhoff, C. Kübel, M. Bruns, N. Stürzl, A.S. Ulrich, M. Ghafari, H. Hahn, C.P. Grey, K.D. Becker, P. Heitjans, J. Mater. Chem. 22, 3117 (2012). https://doi.org/10.1039/C2JM15427G

    Article  Google Scholar 

  31. S. Wang, Y. Zhang, Coatings (2023). https://doi.org/10.3390/coatings13040793

    Article  Google Scholar 

  32. A. Diéguez, A. Romano-Rodríguez, A. Vilà, J.R. Morante, J. Appl. Phys. 90, 1550 (2001). https://doi.org/10.1063/1.1385573

    Article  CAS  Google Scholar 

  33. X. Zhang, Y. Xu, J. Zhang, S. Dong, L. Shen, A. Gupta, N. Bao, Sci. Rep. (2018). https://doi.org/10.1038/s41598-017-18631-0

    Article  PubMed  PubMed Central  Google Scholar 

  34. H. Wang, A. Yasin, N.J. Quitoriano, G.P. Demopoulos, Nanomater (2019). https://doi.org/10.3390/nano9101382

    Article  Google Scholar 

  35. H. Cai, Y. Xia, C. Dao, J. Li, L. Lin, X. Kong, S. Chen, Z. Huang, G. Chen, ACS Appl. Energy Mater. 2, 7279 (2019). https://doi.org/10.1021/acsaem.9b01256

    Article  CAS  Google Scholar 

  36. Z.B. Fang, Z.J. Yan, Y.S. Tan, X.Q. Liu, Y.Y. Wang, Appl. Surf. Sci. 241, 303 (2005). https://doi.org/10.1016/j.apsusc.2004.07.056

    Article  CAS  Google Scholar 

  37. C. Wang, L. Guo, M. Lei, C. Wang, X. Chu, F. Yang, X. Gao, H. Wamg, Y. Chi, X. Yang, Nanomater 12, 2397 (2022). https://doi.org/10.3390/nano12142397

    Article  CAS  Google Scholar 

  38. J. Tauc, R. Grigorovici, A. Vancu, Phys. Stat. Sol. (b) 15, 627 (1966). https://doi.org/10.1002/PSSB.19660150224

    Article  CAS  Google Scholar 

  39. S. Nilavazhagan, S. Muthukumaran, Superlattices Microstruct. 83, 507 (2015). https://doi.org/10.1016/j.spmi.2015.03.036

    Article  CAS  Google Scholar 

  40. L.P. Peng, L. Fang, X.F. Yang, Y.J. Li, Q.L. Huang, F. Wu, C.Y. Kong, J. Alloys Compd. 484, 575 (2009). https://doi.org/10.1016/j.jallcom.2009.04.139

    Article  CAS  Google Scholar 

  41. C.L. Lin, F.H. Wang, H.S. Jhuang, C.F. Yang, J. Mater. Res. Technol. 9, 6331 (2020). https://doi.org/10.1016/j.jmrt.2020.03.046

    Article  CAS  Google Scholar 

  42. R. Li, Y. Zhou, M. Sun, Z. Gong, Y. Guo, F. Wu, W. Li, W. Ding, Coatings (2019). https://doi.org/10.3390/coatings9090591

    Article  Google Scholar 

  43. V.K. Jain, P. Kumar, M. Kumar, P. Jain, D. Bhandari, Y.K. Vijay, J. Alloys Compd. 509, 3541 (2011). https://doi.org/10.1016/j.jallcom.2010.10.212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Central Instrumentation Facility (CIF) at Pondicherry University for XPS, Raman, and optical characterisations. The authors acknowledge Dr. D. Pamu of Indian Institute of Technology Guwahati for helping in target preparation. Gratitude is expressed to DST-FIST Phase-II for GIXRD Department of Physics, Pondicherry University. The authors also express thanks to Dr. E. Senthil Kumar of the Nanotechnology Research Center (NRC) at SRM Institute of Science and Technology for granting access to Hall Measurements facilities. Special appreciation goes to Dr. D. Selvakumar, Scientist-G at DEBEL (DRDO) in Bangalore, for performing the EDAX analysis. NTS acknowledges Pondicherry University for the research fellowship provided.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

NTS: Investigation, methodology, formal analysis, data curation, writing—original draft preparation. DBM: Conceptualization, visualisation, supervision, funding acquisition, writing—reviewing & editing.

Corresponding author

Correspondence to D. Bharathi Mohan.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 712 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shajan, N.T., Bharathi Mohan, D. RF magnetron sputtering of Zn2SnO4 thin films: optimising microstructure, optical and electrical properties for photovoltaics. J Mater Sci: Mater Electron 35, 882 (2024). https://doi.org/10.1007/s10854-024-12648-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12648-8

Navigation