Skip to main content
Log in

Solution-processed IGZO field-effect transistors with a three-step laser annealing process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, a three-step annealing process was employed to treat IGZO thin-film field-effect transistors (TFTs). We observed that TFTs prepared by an initial high-temperature thermal annealing exhibited a low threshold voltage. By employing a second-step low-temperature annealing, the threshold voltage of the TFT was positively shifted, demonstrating improved turn-off characteristics. However, after this process, a significant decrease in TFT mobility and a change in threshold voltage were observed. By introducing a third 633 nm laser annealing technique, we managed to control the threshold voltage and improve mobility. To investigate the mechanism of the changes in TFT performances up to different post-annealing processes, a series of characterization techniques were employed to explain the TFT performance changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article. Data sharing and data citation are encouraged.

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488–492 (2004). https://doi.org/10.1038/nature03090

    Article  CAS  PubMed  Google Scholar 

  2. E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 24, 2945–2986 (2012). https://doi.org/10.1002/adma.201103228

    Article  CAS  PubMed  Google Scholar 

  3. R.A. Street, T.N. Ng, R.A. Lujan, I. Son, M. Smith, S. Kim, T. Lee, Y. Moon, S. Cho, ACS Appl. Mater. Interfaces 6, 4428–4437 (2014). https://doi.org/10.1021/am500126b

    Article  CAS  PubMed  Google Scholar 

  4. J.Y. Lee, F. Shan, H.S. Kim, S.J. Kim, IEEE Trans. Electron Devices 68, 3371–3378 (2021). https://doi.org/10.1109/TED.2021.3077344

    Article  CAS  Google Scholar 

  5. W. Kim, W.J. Lee, T. Kwak, S. Baek, S.H. Lee, S. Park, Adv. Mater. Interfaces 9, 2200032 (2022). https://doi.org/10.1002/admi.202200032

    Article  CAS  Google Scholar 

  6. J.Y. Lee, A. Tukhtaev, S. Yoo, Y.H. Kim, S.G. Choi, H.G. Ryu, Y.J. Jeong, S.J. Kim, Korean J. Mater. Res. 60, 557–563 (2022). https://doi.org/10.3365/kjmm.2022.60.8.557

    Article  CAS  Google Scholar 

  7. H. Palneedi, J.H. Park, D. Maurya, M. Peddigari, G.T. Hwang, V. Annapureddy, J.W. Kim, J.J. Choi, B.D. Hahn, S. Priya, K.J. Lee, J. Ryu, Adv. Mater. 30, e1705148 (2018). https://doi.org/10.1002/adma.201705148

    Article  CAS  PubMed  Google Scholar 

  8. S. Hwang, J.H. Lee, C.H. Woo, J.Y. Lee, H.K. Cho, Thin Solid Films 519, 5146–5149 (2011). https://doi.org/10.1016/j.tsf.2011.01.074

    Article  CAS  Google Scholar 

  9. J. Huang, J. Blochwitz-Nimoth, M. Pfeiffer, K. Leo, J. Appl. Phys. 93, 838–844 (2003). https://doi.org/10.1063/1.1533838

    Article  CAS  Google Scholar 

  10. M. Nakata, H. Tsuji, H. Sato, Y. Nakajima, Y. Fujisaki, T. Takei, T. Yamamoto, H. Fujikake, Jpn. J. Appl. Phys. 52, 03BB04 (2013). https://doi.org/10.7567/jjap.52.03bb04

    Article  Google Scholar 

  11. M.J. Kim, H.J. Park, S. Yoo, M.H. Cho, J.K. Jeong, IEEE Trans. Electron Devices 69, 2409–2416 (2022). https://doi.org/10.1109/ted.2022.3156961

    Article  CAS  Google Scholar 

  12. Q. Li, X. Li, J. Zhang, J. Funct. Mater. 44, 442 (2013). https://doi.org/10.3969/j.issn.1001-9731.2013.03.034

    Article  CAS  Google Scholar 

  13. T. Miyase, K. Watanabe, I. Sakaguchi, N. Ohashi, K. Domen, K. Nomura, H. Hiramatsu, H. Kumomi, H. Hosono, T. Kamiya, ECS J. Solid State Sci. Technol. 3, Q3085–Q3090 (2014). https://doi.org/10.1149/2.015409jss

    Article  CAS  Google Scholar 

  14. J. Robertson, S.J. Clark, Phys. Rev. B 83, 075205 (2011). https://doi.org/10.1103/PhysRevB.83.075205

    Article  CAS  Google Scholar 

  15. Y. Shao, S.J. Ding, Acta Phys. Sin. 67, 098502 (2018). https://doi.org/10.7498/aps.67.20180074

    Article  CAS  Google Scholar 

  16. B.Y. Su, S.Y. Chu, Y.D. Juang, H.C. Chen, Appl. Phys. Lett. 102, 192101 (2013). https://doi.org/10.1063/1.4804993

    Article  CAS  Google Scholar 

  17. C.Y. Tsay, T.T. Huang, Mater. Chem. Phys. 140, 365–372 (2013). https://doi.org/10.1016/j.matchemphys.2013.03.051

    Article  CAS  Google Scholar 

  18. J.W. Park, W.G. Kim, H. Yoo, H.T. Kim, D.H. Choi, M.S. Kim, H.J. Kim, J. Inform. Disp. 23, 33–43 (2021). https://doi.org/10.1080/15980316.2021.1933223

    Article  CAS  Google Scholar 

  19. S.D. Sharma, D. Singh, K.K. Saini, C. Kant, V. Sharma, S.C. Jain, C.P. Sharma, Appl. Catal. A 314, 40–46 (2006). https://doi.org/10.1080/15980316.2021.1933223

    Article  CAS  Google Scholar 

  20. S.K. Sundaram, E. Mazur, Nat. Mater. 1, 217–224 (2002). https://doi.org/10.1038/nmat767

    Article  CAS  PubMed  Google Scholar 

  21. H.K. Noh, J.S. Park, K.J. Chang, J. Appl. Phys. 113, 063712 (2013). https://doi.org/10.1063/1.4792229

    Article  CAS  Google Scholar 

  22. N.A. Charipar, H. Kim, E. Breckenfeld, K.M. Charipar, S.A. Mathews, A. Piqué, Appl. Phys. A 122, 512 (2016). https://doi.org/10.1007/s00339-016-0034-7

    Article  CAS  Google Scholar 

  23. T.T. Yang, D.H. Kuo, K.P. Tang, J. Non-Cryst. Solids 553, 7 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120503

    Article  CAS  Google Scholar 

  24. H. Han, J.W. Mayer, T.L. Alford, J. Appl. Phys. 100, 6 (2006). https://doi.org/10.1063/1.2357647

    Article  CAS  Google Scholar 

  25. K. Abe, K. Takahashi, A. Sato, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, Thin Solid Films 520, 3791–3795 (2012). https://doi.org/10.1016/j.tsf.2011.10.060

    Article  CAS  Google Scholar 

  26. R. Velichko, Y. Magari, M. Furuta, Materials 15, 334 (2022). https://doi.org/10.3390/ma15010334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Sallis, K.T. Butler, N.F. Quackenbush, D.S. Williams, M. Junda, D.A. Fischer, J.C. Woicik, N.J. Podraza, B.E. White, A. Walsh, L.F.J. Piper, Appl. Phys. Lett. 104, 232108 (2014). https://doi.org/10.1063/1.4883257

    Article  CAS  Google Scholar 

  28. C. Peng, S. Yang, C. Pan, X. Li, J. Zhang, IEEE Trans. Electron Devices 67(10), 4262–4268 (2020). https://doi.org/10.1109/ted.2020.3017718

    Article  CAS  Google Scholar 

  29. J. Bang, S. Matsuishi, H. Hosono, Appl. Phys. Lett. 110, 232105 (2017). https://doi.org/10.1063/1.4985627

    Article  CAS  Google Scholar 

  30. G.H. Kim, B.D. Ahn, H.S. Shin, W.H. Jeong, H.J. Kim, H.J. Kim, Appl. Phys. Lett. 94, 233501 (2009). https://doi.org/10.1063/1.3151827

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 52273242), the National Key R&D Program of China (Nos. 2021YFB2800703, 2021YFB2800701), and the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Fenghua Liu, Hangxing Xie, and Weiping Wu; Methodology: Jiacheng Bao, Yan Liu, and Fenghua Liu; Formal analysis and investigation: Jiacheng Bao, Luying Huang, Yan Liu, Fenghua Liu; Writing—original draft preparation: Jiacheng Bao; Writing—review and editing: Fenghua Liu, Hangxing Xie and Weiping Wu; Funding acquisition: Hangxing Xie and Weiping Wu; Resources: Hangxing Xie and Weiping Wu; and Supervision: Fenghua Liu, Hangxing Xie, and Weiping Wu.

Corresponding authors

Correspondence to Fenghua Liu, Hangxing Xie or Weiping Wu.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, J., Huang, L., Liu, Y. et al. Solution-processed IGZO field-effect transistors with a three-step laser annealing process. J Mater Sci: Mater Electron 35, 872 (2024). https://doi.org/10.1007/s10854-024-12633-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12633-1

Navigation