Skip to main content
Log in

The impact of B2O3/Al2O3 substitution on physical properties and γ-ray shielding competence of aluminum-borate glasses: comparative study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work investigates the impact of B2O3/Al2O3 substitution on the physical properties and γ-ray shielding parameters in the γ-energy range of 0.015: 15 MeV of the aluminum-borate glasses with the composition: (75-X)B2O3 + 10ZnO + 10CdO + 5Na2O + XAl2O3 where X = 5 (BNCZAl-5)–20 (BNCZAl-20)% mol (with step of 5%). Samples were fabricated using the well-known melt quenching technique. The density (ρ) increased gradually from 3.492 to 3.901 g/cm3 and molar volume (Vm) decreased from 22.311 to 21.216 cm3/mol as the Al2O3 content increased from 5 to 20 mol%. The oxygen molar volume (OMV) increased from 9.107 to 9.868 cm3/mol, while the oxygen packing density (OPD) values decreased from 109.810 to 101.341 g.atom/l. Linear-attenuation coefficient (μ) followed the order: BNCZAl-5 < BNCZAl-10 < BNCZAl-15 < BNCZAl-20. The sample that coded as BNCZAL-20 (highest content of Al2O3) possessed the lowest half-value (HVL) and tenth-value (TVL) layers among all studied samples. Within the investigated energy range of Zef\({{\text{Z}}}_{{\text{ef}}}\) within the range: from 27.324 to 10.783, 26.820 to 10.957, 26.351 to 11.128, and 25.915 to 11.296 for the prepared samples BNCZAl-5, BNCZAl-10, BNCZAl-15, and BNCZAl-20 glasses, respectively. The obtained results confirmed that the suggested glasses can be used as alternative materials for radiation shielding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary file.

References

  1. X. Lu, L. Deng, J. Du, J.D. Vienna, Predicting boron coordination in multicomponent borate and borosilicate glasses using analytical models and machine learning. J. Non-Cryst. Solids 553, 120490 (2021)

    Article  CAS  Google Scholar 

  2. K. MacDonald, D. Boyd, Investigation of multicomponent fluoridated borate glasses through a design of mixtures approach. Materials 15(18), 6247 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. G. Lakshminarayana, S.O. Baki, K.M. Kaky, M.I. Sayyed, H.O. Tekin, A. Lira, I.V. Kityk, M.A. Mahdi, Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications. J. Non-Cryst. Solids 471, 222–237 (2017)

    Article  CAS  Google Scholar 

  4. S. Kaur, K.J. Singh, Investigation of lead borate glasses doped with aluminum oxide as gamma ray shielding materials. Ann. Nucl. Energy 63, 350–354 (2014)

    Article  CAS  Google Scholar 

  5. S.C. Colak, I. Akyuz, F. Atay, On the dual role of ZnO in zinc–borate glasses. J. Non-Cryst. Solids 432, 406–412 (2016)

    Article  Google Scholar 

  6. M. Schuch, C. Trott, P. Maass, Network forming units in alkali borate and borophosphate glasses and the mixed glass former effect. RSC Adv. 1(7), 1370–1382 (2011)

    Article  CAS  Google Scholar 

  7. D. Ehrt, Structure, properties and applications of borate glasses. Glass Technol. 41(6), 182–185 (2000)

    CAS  Google Scholar 

  8. D.S. Brauer, D. Möncke, Introduction to the structure of silicate, phosphate and borate glasses, in Bioactive Glasses. ed. by A.R. Boccaccini, D.S. Brauer, L. Hupa (Royal Society of Chemistry, Cambridge, 2016), pp.61–88

    Chapter  Google Scholar 

  9. J. Singh, D. Singh, S.P. Singh, G.S. Mudahar, K.S. Thind, Optical characterization of sodium borate glasses with different glass modifiers. Mater. Phys. Mech. 19(1), 9–15 (2014)

    CAS  Google Scholar 

  10. G. El Damrawi, A.M. Abdelghany, H. Salaheldin, Effect of aluminum oxide on the structure and conduction behaviors of silver borate glasses. Bull. Chem. Soc. Ethiopia 36(3), 597–606 (2022)

    Article  Google Scholar 

  11. D. Singh, K. Singh, B.S. Bajwa, G.S. Mudahar, D.P. Singh, Manupriya, M. Arora, V.K. Dangwal, Optical and structural properties of Li2O–Al2O3–B2O3 glasses before and after γ-irradiation effects. J. Appl. Phys. 104, 103515 (2008)

    Article  Google Scholar 

  12. N. Ohtori, M. Togashi, K. Takase, K. Handa, J. Ide, E.I.K. Kamitsos, T. Fukunaga, N. Umesaki, MD study of sodium borate glasses containing Al2O3. Phys. Chem. Glasses 47(4), 323–327 (2006)

    CAS  Google Scholar 

  13. J.F. Stebbins, M. Duer, NMR studies of oxide glass structure, in Solid State NMR: Theory and Applications. ed. by M.J. Duer (Wiley, Hoboken, 2002), pp.391–436

    Google Scholar 

  14. T. Ohkubo, R. Monden, Y. Iwadate, S. Kohara, K. Deguchi, S. Ohki, T. Shimizu, Structural investigation of aluminoborosilicate glasses containing Na2MoO4 crystallites by solid state NMR. Phys. Chem. Glasses 56(4), 139–144 (2015)

    Google Scholar 

  15. Y.B. Saddeek, S.A. Issa, T. Alharbi, K. Aly, M. Ahmad, H.O. Tekin, Mechanical and nuclear shielding properties of sodium cadmium borate glasses: impact of cadmium oxide additive. Ceram. Int. 46, 2661–2669 (2020)

    Article  CAS  Google Scholar 

  16. M.R. Ahmed, K.C. Sekhar, S. Ahammed, V. Sathe, Z.A. Alrowaili, M. Amami, I.O. Olarinoye, M.S. Al-Buriahi, B.T. Tonguc, Md. Shareefuddin, Synthesis, physical, optical, structural and radiation shielding characterization of borate glasses: a focus on the role of SrO/Al2O3 substitution. Ceram. Int. 48, 2124–2137 (2022)

    Article  CAS  Google Scholar 

  17. B. Sreenivas, P.H. Bindu, Effect Of Al2O3 On the optical and physical characteristics of CdO–ZnO–B2O3 Glasses. IOSR J. Appl. Phys. 15, 29–34 (2023)

    Google Scholar 

  18. G.N. Devde, G. Upender, M.V. Chandra, L.S. Ravangave, Structure, thermal and spectroscopic properties of Cu2+ ions doped 59B2O3-10K2O-(30–x)ZnO–xBaO–1CuO (0 ≤ x ≤ 30 mol%) glass system. J. Non-Crystall. Solids 432, 319–324 (2016)

    Article  CAS  Google Scholar 

  19. F.B. Brown et al., MCNP version 5. Trans. Am. Nucl. Soc. 87(273), 02–3935 (2002)

    Google Scholar 

  20. M.C. Team, MCNP—a General Monte Carlo N-particle transport code (X-5 Monte Carlo Team, Version 5). Vol. I: Overview and theory. Los Alamos, NM: Los Alamos National Laboratory. LA-UR-03-1987 (2003).

  21. V. Mosorov, J. Abdullah, MCNP5 code in radioactive particle tracking. Appl. Radiat. ISOT 69, 1287–93 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. I. Akkurt, R.B. Malidarre, Gamma photon-neutron attenuation parameters of marble concrete by MCNPX code. Radiat. Eff. Defects Solids 176, 906–918 (2021)

    Article  CAS  Google Scholar 

  23. W. Zhou, T. Cui, Z. Zhang, Y. Yang, H. Yi, D. Hou, Measurement of wide energy range neutrons with a CLYC (Ce) scintillator. J. Instrum. 10, P02014 (2023)

    Article  Google Scholar 

  24. A. Sengul, M.S. Akhtar, I. Akkurt, R.B. Malidarre, Z. Er, I. Ekmekci, Gamma-neutron shielding parameters of (S3Sb2)x (S2Ge)100–x chalcogenide glasses nanocomposite. Radiat. Phys. Chem. 204, 110675 (2023)

    Article  CAS  Google Scholar 

  25. I.M. Nabil, M.G. El-Samrah, A. Omar, A.F. Tawfic, A.F. El Sayed, Experimental, analytical, and simulation studies of modified concrete mix for radiation shielding in a mixed radiation field. Sci. Rep. 13, 17637 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M.M. Salem, E. Kenawy, H.M.H. Zakaly, A. Ene, M.M. Azaam, T.B. Edries, D. Zhou, M.M. Hussein, A.S. Abd El-Hameed, I.M. Nabil, M.A. Darwish, Electrospun PVDF/Barium hexaferrite fiber composites for enhanced electromagnetic shielding in the X-band range. Results Phys. 53, 106975 (2023)

    Article  Google Scholar 

  27. R. Kurtulus, T. Kavas, E. Kavaz, G. ALMisned, H.O. Tekin, Synthesis, optical, structural, physical, and experimental gamma-ray transmission properties of high-density lead-boro-tellurite glasses: a multi-phases investigation towards providing a behavioral symmetry through lead(II) oxide. Ceram. Int. 49, 23189–23196 (2023)

    Article  CAS  Google Scholar 

  28. S. Vedavyas, I.M. Nabil, K.C. Sekhar, N. Almousa, S.A.M. Issa, Md. Shareefuddin, H.M.H. Zakaly, Characterization and analysis of physical, optical, and radiation attenuation properties of vanadium-infused in cadmium lead borate tellurite glasses. Opt. Mater. 150, 115157 (2024)

    Article  CAS  Google Scholar 

  29. N.A.M. Alsaif, H. Al-Ghamdi, R.A. Elsad, A.M. Abdelghany, S.M. Shaaban, Y.S. Rammah, I.M. Nabil, Fabrication, physical properties and γ-ray shielding factors of high dense B2O3–PbO–Na2O–CdO–ZnO glasses: impact of B2O3/PbO substitution. J. Mater. Sci. 35, 534 (2024)

    CAS  Google Scholar 

  30. N. Alfryyan, Z.A. Alrowaili, S. Alomairy, I.M. Nabil, M.S. Al-Buriahi, Radiation attenuation properties of zinc–borosilicate glasses containing Al2O3 and Gd2O3. Silicon 15, 8031–8043 (2023)

    Article  CAS  Google Scholar 

  31. N. Ekinci, K. Mahmoud, B. Aygün, M. Hessien, Y.S. Rammah, Impacts of the colemanite on the enhancement of the radiation shielding capacity of polypropylene. J. Mater. Sci. 33, 20046–20055 (2022)

    CAS  Google Scholar 

  32. E. Sakar, F. Özgür, A. Bünyamin, M.I. Sayyed, K. Murat, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  CAS  Google Scholar 

  33. Y.S. Rammah, K. Mahmoud, F. El-Agawany, O. Tashlykov, E. Yousef, Tm3+ ions-doped phosphate glasses: nuclear shielding competence and elastic moduli. Appl. Phys. A 126, 1–11 (2020)

    Article  Google Scholar 

  34. I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997)

    Article  CAS  Google Scholar 

  35. A. Khalil, I.I. Bondouk, E.A. Allam, I.M. Nabil, M. Al-Abyad, H. Saudi, A. El-Taher, E.M. Mahmoud, A. Amar, A binary composite material of nano polyaniline intercalated with nano-Fe2O3 for enhancing gamma-radiation-shielding properties: experimental and simulation study. Progr. Nucl. Energy 169, 105067 (2024)

    Article  CAS  Google Scholar 

  36. H.M.H. Zakaly, I.M. Nabil, S.A.M. Issa, N. Almousa, Z.Y. Khattari, Y.S. Rammah, Probing the elasticity and radiation protection potential of neodymium(III) doped zinc and niobium tellurite glasses: an integrated simulated and applied physics perspective. Mater. Today Commun. 37, 107113 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R291), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Funding

Funding was provided by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R291).

Author information

Authors and Affiliations

Authors

Contributions

All authors have been shared in Conceptualization, Methodology, Software, Validation, Investigation, Data Curation, Writing-Review and Editing, Visualization, and Supervision.

Corresponding author

Correspondence to Y. S. Rammah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouhaswa, A.S., Abdelghany, A.M., Alfryyan, N. et al. The impact of B2O3/Al2O3 substitution on physical properties and γ-ray shielding competence of aluminum-borate glasses: comparative study. J Mater Sci: Mater Electron 35, 845 (2024). https://doi.org/10.1007/s10854-024-12629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12629-x

Navigation