Skip to main content
Log in

Synergism effect of Pb doping and microstructure optimization on the superconducting properties of Bi-2212 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi-2212 is one of the most competitive high-temperature superconducting materials for the fabrication of high field magnet, but its superconducting transmission mechanism is not clear yet. To further investigate the effects of both weak connections and magnetic flux pinning on the current transition process, polycrystalline bulks of Bi2Sr2CaCuO8+δ (Bi-2212) with different chemical compositions and microstructures were prepared with the introduction of Pb doping and spark plasma sintering process. Both XRD and SEM indicated that nearly single phase Bi-2212 bulks with high (00l) texture could be achieved with spark plasma sintering. The texture degree of Bi-2212 bulks was positively correlated with Tcj and Tp, and negatively related to ΔT, indicating that the increase of texture degree could improve the intergranular connectivity. Besides, it was found that grain size had a stronger impact on the self-field Jc than texture degree by analyzing the relationship between full-width at half maximum of (008) and self-field Jc. In addition, by analyzing the flux pinning properties, it indicated that Pb doping could enhance the point pinning property, while the improving textural structure could enhance the surface pinning property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Yao, Y.W. Ma, iScience 24, 102541 (2021). https://doi.org/10.1016/j.isci.2021.102541

    Article  PubMed  PubMed Central  Google Scholar 

  2. D. Uglietti, Supercond. Sci. Technol. 32, 053001 (2019). https://doi.org/10.1088/1361-6668/ab06a2

    Article  CAS  Google Scholar 

  3. A. Molodyk, D.C. Larbalestier, Science. 380, 1220–1222 (2023). https://doi.org/10.1126/science.abq4137

    Article  CAS  PubMed  Google Scholar 

  4. Y. Oz, J.Y. Jiang, M. Matras, T.A. Oloye, F. Kametani, E.E. Hellstrom, D.C. Larbalestier, Phys. Rev. Mater. 5, 074803 (2021). https://doi.org/10.1103/PhysRevMaterials.5.074803

    Article  CAS  Google Scholar 

  5. T.A. Oloye, M. Matras, J.Y. Jiang, S.I. Hossain, Y.F. Su, U.P. Trociewitz, E.E. Hellstrom, D.C. Larbalestier, F. Kametani, Supercond. Sci. Technol. 34, 035018 (2021). https://doi.org/10.1088/1361-6668/abd575

    Article  Google Scholar 

  6. H.P. Miao, K.R. Marken, M. Meinesz, B. Czabaj, S. Hong, IEEE Trans. Appl. Supercond. 15, 2554–2557 (2005). https://doi.org/10.1109/tasc.2005.847648

    Article  CAS  Google Scholar 

  7. J.Y. Jiang, G. Bradford, S.I. Hossain, M.D. Brown, J. Cooper, E. Miller, Y.B. Huang, H.P. Miao, J.A. Parrell, M. White, A. Hunt, S. Sengupta, R. Revur, T.M. Shen, S. Member, F. Kametani, U.P. Trociewitz, E.E. Hellstrom, D.C. Larbalestier, IEEE Trans. Appl. Supercond. 29, 1–5 (2019). https://doi.org/10.1109/TASC.2019.2895197

    Article  Google Scholar 

  8. T.M. Shen, L.G. Fajardo, Instruments 4, 17 (2020). https://doi.org/10.3390/instruments4020017

    Article  CAS  Google Scholar 

  9. P. Chen, U.P. Trociewitz, J. Lu, E.S. Bosque, J.Y. Jiang, E.E. Hellstrom, D.C. Larbalestier, IEEE Trans. Appl. Supercond. 27, 1–5 (2017). https://doi.org/10.1109/TASC.2017.2652849

    Article  Google Scholar 

  10. G.M. Wang, M.J. Raine, D.P. Hampshire, Supercond. Sci. Technol. 31, 024001 (2018). https://doi.org/10.1088/1361-6668/aaa1b8

    Article  CAS  Google Scholar 

  11. R. Kang, D. Uglietti, Y. Song, IEEE Trans. Appl. Supercond. 30, 1–9 (2020). https://doi.org/10.1109/tasc.2020.3000229

    Article  CAS  Google Scholar 

  12. W. Labban, W. Malaeb, K. Habanjar, M.S. Hassan, R. Sakagami, Y. Kamihara, R. Awad, Phase Transit. 93, 1055–1066 (2020). https://doi.org/10.1080/01411594.2020.1837371

    Article  CAS  Google Scholar 

  13. C.W. Chu, L.Z. Deng, B. Lv, Phys. C 514, 290–313 (2015). https://doi.org/10.1016/j.physc.2015.02.047

    Article  CAS  Google Scholar 

  14. G.M. Wang, M.J. Raine, D.P. Hampshire, Supercond. Sci. Technol. 30, 104001 (2017). https://doi.org/10.1088/1361-6668/aa7f24

    Article  CAS  Google Scholar 

  15. S.N. Zhang, X.B. Ma, L.J. Cui, Y.J. Huang, X.Q. Liu, C.S. Li, J.Q. Feng, P.X. Zhang, J. Mater. Sci. Mater. Electron. 30, 3418–3425 (2019). https://doi.org/10.1007/s10854-018-00616-y

    Article  CAS  Google Scholar 

  16. B. Özkurt, J. Mater. Sci. Mater. Electron. 32, 6028–6037 (2021). https://doi.org/10.1007/s10854-021-05322-w

    Article  CAS  Google Scholar 

  17. S.N. Zhang, C.S. Li, Q.B. Hao, T.N. Lu, P.X. Zhang, Phys. C 511, 26–32 (2015). https://doi.org/10.1016/j.physc.2015.02.004

    Article  CAS  Google Scholar 

  18. S.N. Zhang, M. Liang, C.S. Li, Q.B. Hao, J.Q. Feng, P.X. Zhang, Mater. Lett. 157, 197–200 (2015). https://doi.org/10.1016/j.matlet.2015.05.096

    Article  CAS  Google Scholar 

  19. M. Gürsul, I. Ergin, C. Özçelik, T. Depci, B. Özçelik, M.A. Madre, A. Sotelo, J. Mater. Sci. Mater. Electron. 32, 17686–17699 (2021). https://doi.org/10.1007/s10854-021-06305-7

    Article  CAS  Google Scholar 

  20. U. Erdem, J. Mater. Sci. Mater. Electron. 32, 28587–28604 (2021). https://doi.org/10.1007/s10854-021-07236-z

    Article  CAS  Google Scholar 

  21. J. Kumar, P.K. Ahluwalia, H. Kishan, V.P.S. Awana, J. Supercond. Novel Magn. 23, 493–499 (2010). https://doi.org/10.1007/s10948-009-0622-2

    Article  CAS  Google Scholar 

  22. A. Sotelo, S. Rasekh, G. Constantinescu, H. Amaveda, M.A. Torres, M.A. Madre, J.C. Diez, J. Eur. Ceram. Soc. 34, 2977–2982 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.04.010

    Article  CAS  Google Scholar 

  23. S.N. Zhang, C.S. Li, Q.B. Hao, X.B. Ma, T.N. Lu, P.X. Zhang, Supercond. Sci. Technol. 28, 045014 (2015). https://doi.org/10.1088/0953-2048/28/4/045014

    Article  CAS  Google Scholar 

  24. Z.B. Li, G.Q. Liu, K. Yao, G.F. Jiao, X.Y. Xu, Q.B. Hao, L.H. Jin, C.S. Li, J. Supercond. Novel Magn. 36, 843–861 (2023). https://doi.org/10.1007/s10948-023-06531-6

    Article  CAS  Google Scholar 

  25. B. Özkurt, J. Supercond, Novel Magn. 34, 1059–1066 (2021). https://doi.org/10.1007/s10948-021-05819-9

    Article  CAS  Google Scholar 

  26. A. Jeremie, K. Alami-Yadri, J. Grivel, R. Flükiger, Supercond. Sci. Technol. 6, 730 (1993). https://doi.org/10.1088/0953-2048/6/10/005

    Article  CAS  Google Scholar 

  27. İ. Öz, C. Terzioglu, M. Öz, A.T. Ülgen, M.B. Türköz, Ü. Erdem, G. Yildirim, Ceram. Int. 49, 8417–8427 (2023). https://doi.org/10.1016/j.ceramint.2022.11.004

    Article  CAS  Google Scholar 

  28. F.I.N. de Vera, B.G. Singidas, R.V. Sarmago, Cryogenics. 121, 103406 (2022). https://doi.org/10.1016/j.cryogenics.2021.103406

    Article  CAS  Google Scholar 

  29. Ö. Bilgili, M. Yurddaskal, J. Electron. Mater. 50, 4999–5006 (2021). https://doi.org/10.1007/s11664-021-09023-2

    Article  CAS  Google Scholar 

  30. B. Özçelik, I. Ergin, M.A. Madre, A. Sotelo, J. Supercond Novel Magn. 33, 1285–1292 (2019). https://doi.org/10.1007/s10948-019-05360-w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by National Key Research and Development Program 2021YFB3800200, the National Natural Science Foundation of China (No. 52277029), and the Shaanxi Natural Science Foundation Project (No.2020JM-650).

Funding

This study was financially supported by National Key Research and Development Program 2021YFB3800200, the National Natural Science Foundation of China (No. 52277029), and the Shaanxi Natural Science Foundation Project (No. 2020JM-650).

Author information

Authors and Affiliations

Authors

Contributions

YZ: investigation, formal analysis, visualization, writing—original draft, writing—review and editing. SZ: conceptualization, methodology, supervision, validation, writing—review and editing. XL: validation, writing—original draft, writing—review and editing. YH: methodology, supervision, validation. JL: investigation, conceptualization. JF: investigation, conceptualization. CL: investigation, conceptualization. PZ: investigation, supervision.

Corresponding authors

Correspondence to Shengnan Zhang or Yixuan He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study does not involve experiments with human tissue or others requiring bioethical approval.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, S., Liu, X. et al. Synergism effect of Pb doping and microstructure optimization on the superconducting properties of Bi-2212 ceramics. J Mater Sci: Mater Electron 35, 816 (2024). https://doi.org/10.1007/s10854-024-12608-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12608-2

Navigation