Skip to main content
Log in

Photo-physical properties of solution-processed CuFe2O4 thin films towards all oxide TiO2/CuFe2O4 heterojunction photovoltaics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Finding low-cost, solution-processed, stable, and environmentally friendly materials that absorb visible light is the main challenge in designing optoelectronic devices such as photovoltaic (PV) cells. Spinel-structured p-type CuFe2O4 (CFO) is an environmentally stable, non-toxic complex oxide known for its superparamagnetic properties. Having a narrow bandgap with a high-absorption coefficient, it has been used for photocatalytic activities and photo-electrochemical water splitting. Here, we explore the feasibility of solution-processed CFO thin film as an absorber layer in n-p heterojunction PV cells. Spin-coated CFO thin film on a fluorine-doped tin oxide (FTO) coated glass substrate shows a single-phase spinel tetragonal crystal structure with an optical band gap of around 2 eV and a high absorption coefficient of 105 cm−1. A steady rise under illumination in the transient photocurrent response of the CFO films confirms its visible light sensitivity. The solution-processed all oxide TiO2/CFO-based n-p heterojunction shows typical diode-like characteristics, and under 1 sun illumination, it shows a photovoltage over 430 mV and photocurrent density of 0.432 mA cm−2. Hence, the studied optoelectronic properties of CFO thin films indicate the possibility of CFO as an active material in PV cells that further strengthens its multifunctionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors affirm that the core data of this research article is original and has not been previously published, nor is it currently under consideration for publication elsewhere. The data corresponding to the findings of this research is obtainable from the corresponding author upon reasonable request.

References

  1. A. Bouhemadou, D. Allali, K. Boudiaf, B. Al Qarni, S. Bin-Omran, R. Khenata, Y. Al-Douri, J. Alloys Compd. 774, 299 (2019)

    Article  CAS  Google Scholar 

  2. B. Marzougui, Y. Ben Smida, R. Marzouki, D.C. Onwudiwe, Y. Al-Douri, A.H. Hamzaoui, Solid State Commun. (2023). https://doi.org/10.1016/j.ssc.2023.115113

    Article  Google Scholar 

  3. L.K. Rathore, P. Garg, P. Kumar, A. Bera, Nanoscale 16, 2599 (2024)

    Article  CAS  PubMed  Google Scholar 

  4. S. Noreen, A. Hussain, Opt. Mater. 139, 113797 (2023)

    Article  CAS  Google Scholar 

  5. A.A. Ibiyemi, O. Akinrinola, G.T. Yusuf, Appl. Phys. A 128, 792 (2022)

    Article  CAS  Google Scholar 

  6. D. Harrabi, S. Hcini, J. Dhahri, M.A. Wederni, A.H. Alshehri, A. Mallah, K. Khirouni, M.L. Bouazizi, J. Inorg. Organomet. Polym. Mater. 33, 47 (2023)

    Article  CAS  Google Scholar 

  7. V.L. Savithri Vatsalya, G.S. Sundari, C.S.L.N. Sridhar, I.L. Prasanna, C.S. Lakshmi, J. Lumin. 252, 119314 (2022)

    Article  CAS  Google Scholar 

  8. P. Garg, A. Bera, Appl. Phys. Lett. 123, 023301 (2023)

    Article  CAS  Google Scholar 

  9. A.F.S. Abu-Hani, S.T. Mahmoud, F. Awwad, A.I. Ayesh, Sens. Actuators B Chem. 241, 1179 (2017)

    Article  CAS  Google Scholar 

  10. N.J. Mondal, R. Sonkar, B. Boro, M.P. Ghosh, D. Chowdhury, Nanoscale Adv. 5, 5460–5475 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. P. Kaith, P. Garg, A. Bera, Appl. Phys. Lett. 122, 133301 (2023)

    Article  CAS  Google Scholar 

  12. S. Munjal, N. Khare, Appl. Phys. Lett. 113, 243501 (2018)

    Article  Google Scholar 

  13. W. Hu, N. Qin, G. Wu, Y. Lin, S. Li, D. Bao, J. Am. Chem. Soc. 134, 14658 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. M. Einert, A. Waheed, S. Lauterbach, M. Mellin, M. Rohnke, L.Q. Wagner, J. Gallenberger, C. Tian, B.M. Smarsly, W. Jaegermann, F. Hess, H. Schlaad, J.P. Hofmann, Small 19, 2205412 (2023)

    Article  CAS  Google Scholar 

  15. P.-H. Chung, C.-T. Kuo, T.-H. Wang, Y.-Y. Lu, C.-I. Liu, T.-R. Yew, ACS Appl. Mater. Interfaces 13, 6411 (2021)

    Article  CAS  PubMed  Google Scholar 

  16. J. Massoudi, O. Messaoudi, S. Gharbi, T. Mnasri, E. Dhahri, K. Khirouni, E.K. Hlil, L. Alfhaid, L. Manai, A. Azhary, J. Phys. Chem. C 126, 2857 (2022)

    Article  CAS  Google Scholar 

  17. E.A. Schultz-Sikma, H.M. Joshi, Q. Ma, K.W. MacRenaris, A.L. Eckermann, V.P. Dravid, T.J. Meade, Chem. Mater. 23, 2657 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. C.-Y. Zhang, X.-Q. Shen, J.-X. Zhou, M.-X. Jing, K. Cao, J. Sol-Gel Sci. Technol. 42, 95 (2007)

    Article  CAS  Google Scholar 

  19. Z. Nazeer, I. Bibi, F. Majid, S. Kamal, S.M. Ibrahim, M. Iqbal, Opt. Mater. 125, 112090 (2022)

    Article  CAS  Google Scholar 

  20. B.S. Holinsworth, D. Mazumdar, H. Sims, Q.-C. Sun, M.K. Yurtisigi, S.K. Sarker, A. Gupta, W.H. Butler, J.L. Musfeldt, Appl. Phys. Lett. 103, 082406 (2013)

    Article  Google Scholar 

  21. Y.M. Lee, Y.Y. Lu, C.T. Fu, C.T. Kuo, L.C. Hou, Y.H. Chuang, P.H. Chung, T.H. Wang, C.I. Liu, T.R. Yew, Phys. Status Solidi-Rapid Res. Lett. 16, 1 (2022)

    Google Scholar 

  22. M.H. Tran, T.M.H. Nguyen, C.W. Bark, J. Alloys Compd. 970, 172422 (2024)

    Article  CAS  Google Scholar 

  23. R. Zapukhlyak, M. Hodlevsky, V. Boychuk, J. Mazurenko, V. Kotsyubynsky, L. Turovska, B. Rachiy, S. Fedorchenko, J. Magn. Magn. Mater. 587, 171208 (2023)

    Article  CAS  Google Scholar 

  24. Z. Sun, L. Liu, D. zeng Jia, W. Pan, Sens. Actuators B Chem. 125, 144 (2007)

    Article  CAS  Google Scholar 

  25. K.-S. Kang, C.-H. Kim, W.-C. Cho, K.-K. Bae, S.-W. Woo, C.-S. Park, Int. J. Hydrogen Energy 33, 4560 (2008)

    Article  CAS  Google Scholar 

  26. R. Kalai Selvan, N. Kalaiselvi, C.O. Augustin, C.H. Doh, C. Sanjeeviraja, J. Power Sour. 157, 522 (2006)

    Article  CAS  Google Scholar 

  27. S.S. Shin, S.J. Lee, S.I. Seok, APL Mater. 7, 022401 (2019)

    Article  Google Scholar 

  28. Z. Fan, K. Yao, J. Wang, Appl. Phys. Lett. 105, 162903 (2014)

    Article  Google Scholar 

  29. L. Wang, Y. Li, A. Bera, C. Ma, F. Jin, K. Yuan, W. Yin, A. David, W. Chen, W. Wu, W. Prellier, S. Wei, T. Wu, Phys. Rev. Appl. 3, 064015 (2015)

    Article  Google Scholar 

  30. R. Bhardwaj, R. Barman, D. Kaur, Mater. Lett. 185, 230 (2016)

    Article  CAS  Google Scholar 

  31. B. Kupfer, K. Majhi, D.A. Keller, Y. Bouhadana, S. Rühle, H.N. Barad, A.Y. Anderson, A. Zaban, Adv. Energy Mater. 5, 1401007 (2015)

    Article  Google Scholar 

  32. L. Wang, H. Ma, L. Chang, C. Ma, G. Yuan, J. Wang, T. Wu, Small 13, 1602355 (2017)

    Article  Google Scholar 

  33. V.K. Mittal, P. Chandramohan, S. Bera, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, Solid State Commun. 137, 6 (2006)

    Article  CAS  Google Scholar 

  34. S. Park, J.H. Baek, L. Zhang, J.M. Lee, K.H. Stone, I.S. Cho, J. Guo, H.S. Jung, X. Zheng, ACS Sustain. Chem. Eng. 7, 5867 (2019)

    Article  CAS  Google Scholar 

  35. R. Ramadan, V. Uskoković, M.M. El-Masry, J. Alloys Compd. 954, 170040 (2023)

    Article  CAS  Google Scholar 

  36. D. Tiwari, D.J. Fermin, T.K. Chaudhuri, A. Ray, J. Phys. Chem. C 119, 5872 (2015)

    Article  CAS  Google Scholar 

  37. I.T. Papadas, A. Ioakeimidis, I. Vamvasakis, P. Eleftheriou, G.S. Armatas, S.A. Choulis, Front. Chem. 9, 1 (2021)

    Article  Google Scholar 

  38. S. Chatterjee, A. Bera, A.J. Pal, ACS Appl. Mater. Interfaces 6, 20479 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. A. Bera, K. Wu, A. Sheikh, E. Alarousu, O.F. Mohammed, T. Wu, J. Phys. Chem. C 118, 28494 (2014)

    Article  CAS  Google Scholar 

  40. Y. Liu, F. Le Formal, F. Boudoire, L. Yao, K. Sivula, N. Guijarro, J. Mater. Chem. A 7, 1669 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Department of Science and Technology, Government of India, via Project No. DST/ INSPIRE/04/2016/000269.

Funding

For funding we have acknowledged the support of the Department of Science and Technology, Government of India, via Project No. DST/ INSPIRE/04/2016/000269.

Author information

Authors and Affiliations

Authors

Contributions

Parul Garg: Conceptualization (supporting); Data curation (lead); Formal analysis (lead); Investigation (lead); Methodology (lead); Writing—original draft (lead). Ashok Bera: Conceptualization (lead); Funding acquisition (lead); Project administration (lead); Resources (lead); Supervision (lead); Validation (lead); Visualization (lead); Writing—review & editing (lead).

Corresponding author

Correspondence to Ashok Bera.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, P., Bera, A. Photo-physical properties of solution-processed CuFe2O4 thin films towards all oxide TiO2/CuFe2O4 heterojunction photovoltaics. J Mater Sci: Mater Electron 35, 817 (2024). https://doi.org/10.1007/s10854-024-12582-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12582-9

Navigation