Skip to main content
Log in

The Zn1−xMgxO electron transport layer for charge balance in high-brightness inverted quantum-dot light-emitting diodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Colloidal quantum-dot light-emitting diodes (QLEDs) are rapidly gaining recognition as formidable contenders in the realm of next-generation lighting and display devices. Notwithstanding, the journey to commercialization of QLED devices encounters a roadblock in the form of inadequate flexibility exhibited by the electron transport layer, which is typically made of ZnO nanoparticles. The hindrance stems from the substantial specific surface area, existence of surface defect states, and the fixed ZnO bandgap. To surmount these obstacles, we delved into the potential of integrating Mg element as a dopant in ZnO, aiming to enhance the surface chemistry, electrical characteristics, and film morphology of colloidal ZnO nanoparticles. The results clearly indicated that Mg doping played a critical role in diminishing surface defects in ZnO, while simultaneously reducing the density of oxygen vacancies, thereby regulating its electron mobility. Through modulation of the Mg doping concentration, the bandgap width of ZnO can be fine-tuned, leading to the creation of a more suitable electron transport layer. The inverted QLED devices based on Zn1−xMgxO electron transport layers exhibited remarkable advancements, with a peak external quantum efficiency and current efficiency of 6.7% and 29 cd A−1, respectively. These values surpassed those of reference devices by 35 and 28%, underscoring the efficacy of Zn1−xMgxO as a viable approach for enhancing the efficiency of QLED devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Authors state that data supporting the results of our work are present within this research paper. The raw data collected during experiments are obtainable from the corresponding author, if required, on reasonable request.

References

  1. Y.Z. Sun, Y.B. Jiang, X.W. Sun, S. Zhang, S. Chen, Beyond OLED: efficient quantum dot light-emitting diodes for display and lighting application. Chem. Rec 19, 1729–1752 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. H. Zhang, Q. Su, S. Chen, Recent progress in the device architecture of white quantum-dot light-emitting diodes. J. Inf. Disp. 20, 169–180 (2019)

    Article  CAS  Google Scholar 

  3. D. Zhang, T. Huang, L. Duan, Emerging self-emissive technologies for flexible displays. Adv. Mater. 32, 1902391 (2020)

    Article  CAS  Google Scholar 

  4. X. Qu, J. Ma, P. Liu, K. Wang, X.W. Sun, On the voltage sweep behavior of quantum dot light-emitting diode. Nano Res. 16, 5511–5516 (2023)

    Article  CAS  Google Scholar 

  5. V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature. 370, 354–357 (1994)

    Article  CAS  Google Scholar 

  6. J. Song, O. Wang, H. Shen, Q. Lin, Z. Li, L. Wang, X. Zhang, L.S. Li, Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv. Funct. Mater. 29, 1808377 (2019)

    Article  Google Scholar 

  7. X. Li, Q. Lin, J. Song, H. Shen, H. Zhang, L.S. Li, X. Li, Z. Du, Quantum-dot light-emitting diodes for outdoor displays with high stability at high brightness. Adv. Opt. Mater. 8, 1901145 (2020)

    Article  CAS  Google Scholar 

  8. H. Zhang, Q. Su, Y.Z. Sun, S. Chen, Efficient and color stable white quantum-dot light-emitting diodes with external quantum efficiency over 23%. Adv. Opt. Mater. 6, 1800354 (2018)

    Article  Google Scholar 

  9. D. Chen, L. Ma, Y. Chen, X. Zhou, S. Xing, Y. Deng, Y. Hao, C. Pu, X. Kong, Y. Jin, Electrochemically stable ligands of ZnO electron-transporting layers for quantum-dot light-emitting diodes. Nano Lett. 23, 1061–1067 (2023)

    Article  CAS  PubMed  Google Scholar 

  10. A. Soultati, A. Fakharuddin, E. Polydorou, C. Drivas, A. Kaltzoglou, M.I. Haider, F. Kournoutas, M. Fakis, L.C. Palilis, S. Kennou, D. Davazoglou, P. Falaras, P. Argitis, S. Gardelis, A. Kordatos, A. Chroneos, L. Schmidt-Mende, M. Vasilopoulou, Lithium doping of ZnO for high efficiency and stability fullerene and non-fullerene organic solar cells. ACS Appl. Energy Mater. 2, 1663–1675 (2019)

    Article  CAS  Google Scholar 

  11. H.S. Kim, D.H. Lee, B. Kim, B. Hwang, C.K. Kim, Improved performance of quantum dot light emitting diodes by introducing WO3 hole injection layers. Mol. Cryst. Liq Cryst. 735, 51–60 (2022)

    Article  CAS  Google Scholar 

  12. J.W. Stouwdam, R.A.J. Janssen, Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers. J. Mater. Chem. 18, 1889–1894 (2008)

    Article  CAS  Google Scholar 

  13. S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, Z. Du, Bandgap tunable Zn1-xMgxO thin films as electron transport layers for high performance quantum dot light-emitting diodes. J. Mater. Chem. C 5, 4724–4730 (2017)

    Article  CAS  Google Scholar 

  14. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. J. Zeng, Y. Li, X. Fan, Significant breakthroughs in interface engineering for high-performance colloidal QLEDs: a mini review. J. Phys. D: Appl. Phys. 56, 343001 (2023)

    Article  Google Scholar 

  16. Y.J. Lee, H.H. Kim, Y.J. Lee, J.H. Kim, H.J. Choi, W.K. Choi, Electron transport phenomena at the interface of Al electrode and heavily doped degenerate ZnO nanoparticles in quantum dot light emitting diode. Nanotechnology. 30, 035207 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. K.H. Lee, J.H. Lee, H.D. Kang, B. Park, Y. Kwon, H. Ko, C. Lee, J. Lee, H. Yang, Over 40 cd/A efficient green quantum dot electro luminescent device comprising uniquely large-sized quantum dots. ACS Nano. 8, 4893–4901 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, L. Qian, Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 9, 2608 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  19. A. Alexandrov, M. Zvaigzne, D. Lypenko, L. Nabiev, P. Samokhvalov, Al-, Ga-, Mg-, or Li-doped zinc oxide nanoparticles as electron transport layers for quantum dot light-emitting diodes. Sci. Rep. 10, 7496 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. W.H. Shan, A. Alan, H. Javed, K. Rashid, A. Ali, L. Ali, A. Safeen, M.R. Ali, M. Sohail, G. Chambashi, Tuning of the band gap and dielectric loss factor by Mn doping of Zn1-xMnxO nanoparticles. Sci. Rep. 13, 8646 (2023)

    Article  Google Scholar 

  21. K. Noh, M. Kim, S.H. Lee, H.S. Yun, T.H. Lim, Y. Choi, K.J. Kim, Y. Jiang, K. Beom, M. Kim, Y.G. Kim, P. Lee, N. Oh, B.H. Kim, C. Shin, H.H. Lee, T.S. Yoon, M. Shim, J. Lim, K.B. Kim, S.Y. Cho, Effect of ethanolamine passivation of ZnO nanoparticles in quantum dot light emitting diode structure. Curr. Appl. Phys. 19, 998–1005 (2019)

    Article  Google Scholar 

  22. O.S. Kim, B.H. Kang, J.S. Lee, S.W. Lee, S.H. Cha, J.W. Lee, S.W. Kim, S.H. Kim, S.W. Kang, Efficient quantum dots light-emitting devices using polyvinyl pyrrolidone-capped ZnO nanoparticles with enhanced charge transport. IEEE Electr. Device L 37, 1022–1024 (2016)

    Article  CAS  Google Scholar 

  23. H.M. Kim, J. Kim, J. Lee, J. Jang, Inverted quantum-dot light emitting diode using solution processed p-type WOx doped PEDOT: PSS and Li doped ZnO charge generation layer. ACS Appl. Mater. Inter. 7, 24592–24600 (2015)

    Article  CAS  Google Scholar 

  24. S. Cao, J. Zheng, J. Zhao, Z. Yang, C. Li, X. Guan, W. Yang, M. Shang, T. Wu, Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer. ACS Appl. Mater. Inter. 9, 15605–15614 (2017)

    Article  CAS  Google Scholar 

  25. Y. Sun, W. Wang, H. Zhang, Q. Su, J. Wei, P. Liu, S. Chen, S. Zhang, High-performance quantum dot light-emitting diodes based on Al-doped ZnO nanoparticles electron transport layer. ACS Appl. Mater. Inter. 10, 18902–18909 (2018)

    Article  CAS  Google Scholar 

  26. D.M. Bagnall, Y.F. Chen, M.Y. Shen, Z. Zhu, T. Goto, T. Yao, Room temperature excitonic stimulated emission from znic oxide epilayer grown by plasma-assisted MBE. J. Cryst. Growth. 184, 605–609 (1988)

    Google Scholar 

  27. L. Qian, Y. Zheng, J. Xue, P.H. Holloway, Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics. 5, 543–548 (2011)

    Article  CAS  Google Scholar 

  28. Z. Yang, Q. Wu, G. Lin, X. Zhou, W. Wu, X. Yang, J. Zhang, W. Li, All-solution processed inverted green quantum dot light-emitting diodes with concurrent high efficiency and long lifetime. Mater. Horiz. 10, 2009–2015 (2019)

    Article  Google Scholar 

  29. S. Bai, Y. Jin, X. Liang, Z. Ye, Z. Wu, B. Sun, Z. Ma, Z. Tang, J. Wang, U. Würfel, F. Gao, F. Zhang, Ethanedithiol treatment of solution-processed ZnO thin films: controlling the intragap states of electron transporting interlayers for efficient and stable inverted organic photovoltaics. Adv. Energy Mater. 5, 1401606 (2015)

    Article  Google Scholar 

  30. D. Costenaro, F. Carniato, G. Gatti, L. Marchese, C. Bisio, Preparation of luminescent ZnO nanoparticles modified with aminopropyltriethoxy silane for optoelectronic applications. New. J. Chem. 37, 2103–2109 (2013)

    Article  CAS  Google Scholar 

  31. X. Tang, S. He, Y. Deng, X. Lu, X. Zhu, W. Jin, Y. Jin, Mg-diffusion of ZnO-based electron-transport layers for highly conductive quantum-dot light-emitting diodes. J. Phys. Chem. Lett. 14, 5812–5817 (2023)

    Article  CAS  PubMed  Google Scholar 

  32. K. Nomura, H. Ohta, A. Takagi, M. Hirano, H. Hosono,  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature  432, 488–492 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. H.M. Kim, S. Cho, J. Kim, H. Shin, J. Jang, Li and mg co-doped zinc oxide electron transporting layer for highly efficient quantum dot light-emitting diodes. ACS Appl. Mater. Inter. 10, 24028–24036 (2018)

    Article  CAS  Google Scholar 

  34. C.J. Ku, W.C. Hong, T. Mohsin, R. Li, Z. Duan, Y. Lu, Improvement of negative bias stress stability in Mg0.03Zn0.97O thin-film transistors. IEEE Electr. Device L. 36, 914–916 (2015)

    Article  CAS  Google Scholar 

  35. Y.L. Shi, F. Liang, Y. Hu, M.P. Zhuo, X.D. Wang, L.S. Liao, High performance blue quantum dot light emitting diodes employing polyethylenimine ethoxylated as the interfacial modifier. Nanoscale  9, 14792–14797 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China, Grant No.  52202168, the Excellent Youth Fund of Henan Natural Science Foundation, China, Grant No. 212300410031, Key Technologies R&D Program of Henan, Grant No. 232102210168 and 242102211083, the Scientific Research Foundation of the Higher Education Institutions of Henan Province, China, Grant No. 23A140019 and 22B430009, and the Henan University of Engineering Foundation, China, Grant No. DKJ2019012.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Chen or Hui Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not involve animal studies. Finally, all authors read and approved the final manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhang, Y., Kun, Y. et al. The Zn1−xMgxO electron transport layer for charge balance in high-brightness inverted quantum-dot light-emitting diodes. J Mater Sci: Mater Electron 35, 754 (2024). https://doi.org/10.1007/s10854-024-12556-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12556-x

Navigation