Skip to main content
Log in

Synthesis of (Mn, Fe) co-doped Zn3P2 nanoparticles: structural, optical and magnetic properties via solid-state reaction route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Manganese and iron (Mn–Fe) co-doped with zinc phosphide (Zn(3−(x+y)) MnxFeyP2, x = 0.02, y = 0.02,0.04,0.06, and 0.08) nanoparticles were synthesised by a solid-state method. Structural, morphological, composition, optical, photoluminescence, and magnetic properties were investigated. The characterization techniques such as XRD (X-ray diffraction), SEM (Scanning electron microscopy), EDS (Energy dispersive X-ray spectroscopy), UV-Vis–NIR spectroscopy (Ultraviolet–Visible near-infrared region), PL (Photoluminescence), and VSM (Vibrating sample magneto meter) were employed to explore the obtained nanoparticles. The XRD analysis revealed that co-doped samples showed a tetragonal structure and no secondary phase peaks were observed in the diffraction patterns. Lattice parameters increase from a = b = 8.0211 Å, c = 11.4048 Å to a = b = 8.1408 Å, c = 11.4629 Å with increasing dopant concentration. The SEM study revealed that the size of agglomerations slightly increases with increasing dopant concentration. The elemental analysis confirmed that all the Mn-Fe co-doped Zn3P2 nanoparticles are nearly stoichiometric. The diffuse reflectance spectra were used to calculate the optical bandgap of the Mn-Fe codoped Zn3P2 nanoparticles and it increased with increase of dopant concentration (1.412–1.425 eV). PL studies confirmed all emission peaks are in the same wavelength position and slight intensity changes with increasing dopant concentration. The M–H hysteresis loop of the pure and Mn-Fe co-doped Zn3P2 nanoparticles shows weak ferromagnetism changing to strong ferromagnetism with the increase in dopant concentration. Magnetic moment obtained from the present studies suggests that the Mn–Fe co-doped Zn3P2 nanoparticles may be a useful material in semiconductor spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on reasonable request. The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M.K. Jain, Diluted magnetic semiconductors (World Scientific, New Jersey, 1991)

    Book  Google Scholar 

  2. M.S. Khan, L. Shi, B. Zou, Sajjad, Theoretical investigation of optoelectronic and magnetic properties of co-doped ZnS and (Al, Co) co-doped ZnS. Comput. Mater. Sci. 174, 109491 (2020). https://doi.org/10.1016/j.commatsci.2019.109491

    Article  CAS  Google Scholar 

  3. G.A. Prinz, Magneto electronics. Science. 282, 1660–1663 (1998). https://doi.org/10.1126/science.282.5394.1660

    Article  CAS  PubMed  Google Scholar 

  4. I. Zutic, J. Fabian, S. Das Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004). https://doi.org/10.1103/RevModPhys.76.323

    Article  CAS  Google Scholar 

  5. D.V. Sridevi, R. Vadivel, S. Perumal, E. Sundaravadivel, V. Sivaramakrishnan, A facile synthesis of Mn-doped ZnSe nanoparticles for an enhanced photocatalytic activity and biological applications. Ceram. Int. 48, 29394–29402 (2022). https://doi.org/10.1016/j.ceramint.2022.06.050

    Article  CAS  Google Scholar 

  6. Y. Zhang, W. Liu, H. Niu, Half-metallic ferromagnetism in Cr-doped AlP—density functional calculations. Solid State Commun. 145, 590–593 (2008). https://doi.org/10.1016/j.ssc.2007.12.022

    Article  CAS  Google Scholar 

  7. W.B. Mi, E.Y. Jiang, H.L. Bai, Structure, magnetic and optical properties of polycrystalline co-doped TiO2 films. J. Magn. Magn. Mater. 321, 2472–2476 (2009). https://doi.org/10.1016/j.jmmm.2009.03.017

    Article  CAS  Google Scholar 

  8. A. Ait Raiss, Y. Sbai, L. Bahmad, A. Benyoussef, Magnetic and magneto-optical properties of doped and co-doped CdTe with (Mn, Fe): Ab-initio study. J. Magn. Magn. Mater. 385, 295–301 (2015). https://doi.org/10.1016/j.jmmm.2015.02.077

    Article  CAS  Google Scholar 

  9. K.H. Kim, K.J. Lee, D.J. Kim, C.S. Kim, H.C. Lee, C.G. Kim, S.H. Yoo, H.J. Kim, Y.E. Ihm, Improvement of magnetic property of GaMnN by codoping of mg. J. Appl. Phys. 93, 6793–6795 (2003). https://doi.org/10.1063/1.1556114

    Article  CAS  Google Scholar 

  10. S. Bhuvana, H.B. Ramalingam, G. Thilakavathi, K. Vadivel, Structural, optical and magnetic properties of (Ni–Mn) co-doped tin oxide nanoparticles. Matte Technol. 32, 305–309 (2017). https://doi.org/10.1080/10667857.2016.1215088

    Article  CAS  Google Scholar 

  11. M. von Stackelberg, R. Paulus, Z. Phys. Chem.  28, 421 (1935)

    Google Scholar 

  12. J.M. Pawlikowski, Absorption edge of Zn3P2. Phys. Rev. B 26, 4711 (1982). https://doi.org/10.1103/PhysRevB.26.4711

    Article  CAS  Google Scholar 

  13. A. Catalano, V. Dalal, W.E. Devaney, E.A. Fagen, R.B. Hall, J.V. Masi, J.D. Meakin, G. Warfield, N. Convers Wyeth, A.M. Barnett, Zn3P2 —a promising photovoltaic material. 13 th Photovoltaic Specialists Conference. 288–293 (1978)

  14. Y. Kato, S. Kurita, T. Suda, Photoenhanced chemical vapor deposition of zinc phosphide. J. Appl. Phys. 62, 3733–3739 (1987). https://doi.org/10.1063/1.339257

    Article  CAS  Google Scholar 

  15. M. Peiteado, T. Jardiel, F. Rubio, A.C. Caballero, Multipod structures of ZnO hydrothermally grown in the presence of Zn3P2. Mater. Res. Bull. 45, 1586–1592 (2010). https://doi.org/10.1016/j.materresbull.2010.07.026

    Article  CAS  Google Scholar 

  16. N. Convers Wyeth, A. Catalano, Spectral response measurements of minority-carrier diffusion length in Zn3P2. J. Appl. Phys. 50, 1403–1407 (1979). https://doi.org/10.1063/1.326122

    Article  Google Scholar 

  17. T. Suda, T. Miyakawa, S. Kurita, Zinc Phosphide thin films grown by RF sputtering. J. Cryst. Growth. 86, 423–435 (1988). https://doi.org/10.1016/0022-0248(90)90754-9

    Article  CAS  Google Scholar 

  18. R.P.N. Humblot, S.E. Steinvall, E.Z. Stutz, S.S. Joglekar, J.-B. Leran, M. Zamani, C. Cayron, R. Logé, Andres Granados Del Aguila, Qihua Xiong, and Anna Fontcuberta i Morral, Van Der Waals epitaxy of earth-abundant Zn3P2 on graphene for photovoltaics. Cryst. Growth Des. 20, 3816–3825 (2020). https://doi.org/10.1021/acs.cgd.0c00125

    Article  CAS  Google Scholar 

  19. P.S. Sadanand, P.K. Babu, A.K. Singh, D.K. Thakur, Dwivedi, Optimization of photovoltaic solar cell performance via the earth abundant Zn3P2 back surface field. Optik. 229, 166235 (2021). https://doi.org/10.1016/j.ijleo.2020.166235

    Article  CAS  Google Scholar 

  20. M. Zamani, E. Stutz, S. Escobar, R.R. Zamani, R. Paul, J.-B. Leran, The path towards 1 µm monocrystalline Zn3P2 films on InP: substrate preparation, growth conditions and luminescence properties. J. Phys. Energy 3, 034011 (2021).

    Article  CAS  Google Scholar 

  21. S.E. Steinvall, Z. Elias, R. Stutz, M. Paul, J.-B. Zamani, Leran, Nanoscale growth initiation as a pathway to improve the earth-abundant absorber zinc phosphide. ACS Appl. Energy Mater. 5, 5298–5306 (2021). https://doi.org/10.1021/acsaem.1c02484

    Article  CAS  Google Scholar 

  22. R.P.S.W. Tabernig, J.R. Sapera, J. Hurni, A. Tiede, X. Liu, A. Djamshid, Carrier generation and collection in Zn3P2/InP heterojunction solar cells. Sol Energy Mater. Sol Cells 256, 112349 (2023). https://doi.org/10.1016/j.solmat.2023.112349

    Article  CAS  Google Scholar 

  23. Z. Elias, S.P. Stutz, M. Ramanandan, R. Flor, M. Paul, S.E. Zamani, A.P. Steinvall, Stoichiometry modulates the optoelectronic functionality of zinc phosphide (Zn 3−xP 2+x). Faraday Discuss (2022). https://doi.org/10.1039/D2FD00055E

    Article  Google Scholar 

  24. X. Li, W.L. Jiale, H. Yu, Z. Zhang, Shi, Z. Guo, Self-supported Zn3P2 nanowires-assembly bundles grafted on Ti foil as an advanced integrated electrodes for lithium/sodium ion batteries with high performances. J. Alloys Compd. 724, 932–939 (2017). https://doi.org/10.1016/j.jallcom.2017.07.016

    Article  CAS  Google Scholar 

  25. I.J. Paredes, C. Beck, S. Lee, S. Chen, M. Khwaja, M.R. Scimeca, S. Li, S. Hwang, Z. Lian, K.M. McPeak, S.F. Shi, Synthesis of luminescent core/shell α-Zn3P2/ZnS quantum dots. Nanoscale 12, 20952–20964 (2020)

    Article  CAS  PubMed  Google Scholar 

  26. E.Z. Stutz, SESteinvall. Steinvall, A.P. Litvinchuk, J.B. Leran, M. Zamani, R. Paul, A.F. Morral, M. Dimitrievska, Raman spectroscopy and lattice dynamics calculations of tetragonally-structured single crystal zinc phosphide (Zn3P2) nanowires. Nanotechnology 32, 085704 (2020).

    Article  Google Scholar 

  27. R. Laiho, K.G. Lisunov, E. Lahderanta, V.S. Zakhvalinskii, Magnetic MnAs nanoclusters in the diluted magnetic semiconductor (Zn1 – xMnx)3As2. J. Phys. Condens. Matter. 11, 8697 (1999)

    Article  CAS  Google Scholar 

  28. C.J.M. Denissen, H. Nishihara, J.C. Van Gool, W.J.M. De Jonge, Magnetic behavior of the semimagnetic semiconductor (Cd1 – xMnx)3As2. Phys. Rev. B 33, 7637 (1986). https://doi.org/10.1103/PhysRevB.33.7637

    Article  CAS  Google Scholar 

  29. G. Jaiganesh, S. Mathi Jaya, Electronic structure and magnetism of titanium substituted Cd3P2: An ab-initio study. AIP conference proceedings. AIP Conf. Proc. (1953). https://doi.org/10.1063/1.5033127

    Article  Google Scholar 

  30. G. Jaiganesh, S. Mathi Jaya, Half-metallic ferromagnetism in Fe-doped Zn3P2 from first-principles calculations.  AIP Conf. Proc. Am. Inst. Phys. 1591, 1081–1083 (2014). https://doi.org/10.1063/1.4872860

    Article  CAS  Google Scholar 

  31. G. Jaiganesh, S. Mathi Jaya, Effect of partial Ti substitution at Zn sites on the structural, electronic and magnetic properties of Zn3P2. Authorea Preprints (2020). https://doi.org/10.22541/au.160466779.91279508/v1

    Article  Google Scholar 

  32. G. Jaiganesh, S. Mathi Jaya, Magnetism, electronic structure and half-metallic property of transition metal (V, cr, Mn, Fe, Co) substituted Zn3P2 dilute magnetic semiconductors: an ab-initio study. Comput. Mater. Sci. 102, 85–94 (2015). https://doi.org/10.1016/j.commatsci.2015.02.018

    Article  CAS  Google Scholar 

  33. N. Praveenkumar, N. Madhusudhana Rao, Ni doped Zn3P2 nanoparticles: synthesis, structural, optical, and magnetic properties. J. Supercond. Novel Magn. (2023). https://doi.org/10.1007/s10948-023-06670-w

    Article  Google Scholar 

  34. R. Ashraf, S. Riaz, M. Bashir, U. Khan, S. Naseem, Structural and magnetic properties of Mn/Fe co-doped ZnO thin films prepared by sol–gel technique. IEEE Trans. Magn. 50, 1–4 (2014). https://doi.org/10.1109/TMAG.2014.2305670

    Article  CAS  Google Scholar 

  35. B.D. Cullity, Answers to problems: elements of X-ray diffraction (Addison-Wesley Publishing Company, London, 1978)

    Google Scholar 

  36. K. Chaitanya Kumar, N. Madhusudhana Rao, S. Kaleemulla, G. Venugopal Rao, Structural, optical and magnetic properties of Sn doped ZnS nanopowders prepared by solid-state reaction. Phys. B Condens. 522, 75 (2017). https://doi.org/10.1016/j.physb.2017.07.071

    Article  CAS  Google Scholar 

  37. M. Bhushan, J.A. Turner, B.A. Parkinson, Photoelectrochemical Investigation of Zn3P2. J. Electrochem. Soc. 133, 536 (1986). https://doi.org/10.1149/1.2108615

    Article  CAS  Google Scholar 

  38. G.M. Kimball, A.M. Muller, N.S. Lewis, H.A. Atwater, Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3225151

    Article  Google Scholar 

  39. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  CAS  Google Scholar 

  40. B. Poornaprakash, D. Amaranatha Reddy, G. Murali, N. Madhusudhana Rao, R.P. Vijayalakshmi, B.K. Reddy, Composition dependent room temperature ferromagnetism and PL intensity of cobalt doped ZnS nanoparticles. J. Alloys Compd. 577, 79–85 (2013). https://doi.org/10.1016/j.jallcom.2013.04.106

    Article  CAS  Google Scholar 

  41. Y.G. Yoo, Ferromagnetism-to-paramagnetism transition in the ZnMnO system. J. Korean Phys. Soc. 52, 1398–1401 (2008)

    Article  Google Scholar 

  42. S.F. Marenkin, V.M. Trukhan, I.V. Fedorchenko, S.V. Trukhanov, T.V. Shelkovaya, Magnetic and electrical properties of Zn3P2 + MnP materials. Inorg. Mater. 49, 545–549 (2013). https://doi.org/10.1134/S0020168513050087

    Article  CAS  Google Scholar 

  43. L. Yan, C.K. Ong, C. K., X.S. Rao, Magnetic order in co-doped and (Mn, Co) codoped ZnO thin films by pulsed laser deposition. J. Appl. Phys. 96, 508–511 (2004). https://doi.org/10.1063/1.1757652

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge VIT-AP’s financial assistance provided via the RGEMS. The authors also give credit to VIT-AP University for analyzing UV–Vis–NIR data. YU-University in Kadapa for XRD, and SEM with EDAX analysis. For helping to record the PL spectra used in the current investigation, the authors are grateful to Dr. Jayasimhadri from the Department of Physics at Delhi Technological University, India. The authors also thank SAIF-IIT Madras for providing vibrating sample magnetometer (VSM) facilities.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

NPK carried out the synthesis, characterizations and writing. NPK and MRN discussed the results and commented on the manuscript.

Corresponding author

Correspondence to N. Madhusudhana Rao.

Ethics declarations

Conflict of interest

Authors declares that there is no conflict of interest involve in the current work.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. In this experiment, we did not collect any samples of human and animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveenkumar, N., Madhusudhana Rao, N. Synthesis of (Mn, Fe) co-doped Zn3P2 nanoparticles: structural, optical and magnetic properties via solid-state reaction route. J Mater Sci: Mater Electron 35, 719 (2024). https://doi.org/10.1007/s10854-024-12512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12512-9

Navigation