Skip to main content
Log in

Renewed graphite for high-performance lithium-ion batteries: catalytic graphitization approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The widespread utilization of lithium-ion batteries has led to an increase in the quantity of decommissioned lithium-ion batteries. By incorporating recycled anode graphite into new lithium-ion batteries, we can effectively mitigate environmental pollution and meet the industry’s high demand for graphite. Herein, a suitable amount of ferric chloride hexahydrate was employed as a catalyst precursor to facilitate the low-temperature graphitization process of spent graphite. This resulted in renewed graphite with abundant pores, a high degree of graphitization (89.5%), and exceptional electrochemical properties. This material exhibits minimal polarization and impedance while maintaining a specific capacity of 376 mAh/g after 260 cycles at a rate of 0.5 C. While highlighting the remarkable attributes of recycled graphite, we also address the limitations associated with the catalytic graphitization method to provide researchers with comprehensive and unbiased insights. Ultimately, we believe that this method will play a pivotal role in recycling spent graphite with severely damaged structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data will be made available on request.

References

  1. R. Gopalakrishnan, S. Goutam, L.M. Oliveira, J.-M. Timmermans, N. Omar, M. Messagie, P. Van den Bossche, J. van Mierlo, A comprehensive study on rechargeable energy storage technologies. J. Electrochem. Energy Convers. Storage (2016). https://doi.org/10.1115/1.4036000

    Article  Google Scholar 

  2. A. Masias, J. Marcicki, W.A. Paxton, Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 6, 621–630 (2021). https://doi.org/10.1021/acsenergylett.0c02584

    Article  CAS  Google Scholar 

  3. IEA, Global EV Outlook 2023-Trends in Batteries (2023), pp. License: CC BY 4.0. https://www.iea.org/reports/global-ev-outlook-2023/trends-in-batteries

  4. Q. Wei, Y. Wu, S. Li, R. Chen, J. Ding, C. Zhang, Spent lithium ion battery (LIB) recycle from electric vehicles: a mini-review. Sci. Total Environ. 866, 161380 (2023). https://doi.org/10.1016/j.scitotenv.2022.161380

    Article  CAS  PubMed  Google Scholar 

  5. X. Zeng, J. Li, N. Singh, Recycling of spent lithium-ion battery: a critical review. Crit. Rev. Environ. Sci. Technol. 44, 1129–1165 (2014). https://doi.org/10.1080/10643389.2013.763578

    Article  CAS  Google Scholar 

  6. Y. Gao, J. Zhang, H. Jin, G. Liang, L. Ma, Y. Chen, C. Wang, Regenerating spent graphite from scrapped lithium-ion battery by high-temperature treatment. Carbon 189, 493–502 (2022). https://doi.org/10.1016/j.carbon.2021.12.053

    Article  CAS  Google Scholar 

  7. H. Hou, X. Qiu, W. Wei, Y. Zhang, X. Ji, Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201602898

    Article  Google Scholar 

  8. J. Liu, H. Shi, X. Hu, Y. Geng, L. Yang, P. Shao, X. Luo, Critical strategies for recycling process of graphite from spent lithium-ion batteries: a review. Sci. Total Environ. (2022). https://doi.org/10.1016/j.scitotenv.2021.151621

    Article  PubMed  PubMed Central  Google Scholar 

  9. K.K. Jena, A. AlFantazi, A.T. Mayyas, Efficient and cost-effective hybrid composite materials based on thermoplastic polymer and recycled graphite. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2021.132667

    Article  Google Scholar 

  10. J. Hao, X. Meng, S. Fang, H. Cao, W. Lv, X. Zheng, C. Liu, M. Chen, Z. Sun, MnO2-functionalized amorphous carbon sorbents from spent lithium-ion batteries for highly efficient removal of cadmium from aqueous solutions. Ind. Eng. Chem. Res. 59, 10210–10220 (2020). https://doi.org/10.1021/acs.iecr.9b06670

    Article  CAS  Google Scholar 

  11. X. Chen, Y. Zhu, W. Peng, Y. Li, G. Zhang, F. Zhang, X. Fan, Direct exfoliation of the anode graphite of used Li-ion batteries into few-layer graphene sheets: a green and high yield route to high-quality graphene preparation. J. Mater. Chem. A 5, 5880–5885 (2017). https://doi.org/10.1039/c7ta00459a

    Article  CAS  Google Scholar 

  12. Y. Wang, H. Cao, L. Chen, C. Chen, X. Duan, Y. Xie, W. Song, H. Sun, S. Wang, Tailored synthesis of active reduced graphene oxides from waste graphite: structural defects and pollutant-dependent reactive radicals in aqueous organics decontamination. Appl. Catal. B 229, 71–80 (2018). https://doi.org/10.1016/j.apcatb.2018.02.010

    Article  CAS  Google Scholar 

  13. Y. Gao, S. Zhang, S. Lin, Z. Li, Y. Chen, C. Wang, Opportunity and challenges in recovering and functionalizing anode graphite from spent lithium-ion batteries: a review. Environ. Res. (2024). https://doi.org/10.1016/j.envres.2024.118216

    Article  PubMed  Google Scholar 

  14. H.A. Khayoon, M. Ismael, A. Al-nayili, H.A. Alshamsi, Fabrication of LaFeO3-nitrogen deficient g-C3N4 composite for enhanced the photocatalytic degradation of RhB under sunlight irradiation. Inorg. Chem. Commun. (2023). https://doi.org/10.1016/j.inoche.2023.111356

    Article  Google Scholar 

  15. S.-J. Han, L. Xu, C. Chen, Z.-Y. Wang, M.-L. Fu, B. Yuan, Recovery of graphite from spent lithium-ion batteries and its wastewater treatment application: a review. Sep. Purif. Technol. (2024). https://doi.org/10.1016/j.seppur.2023.125289

    Article  Google Scholar 

  16. A. Al-nayili, H.A. Khayoon, H.A. Alshamsi, N.M. Cata Saady, A novel bimetallic (Au-Pd)-decorated reduced graphene oxide nanocomposite enhanced rhodamine B photocatalytic degradation under solar irradiation. Mater. Today Sustain. (2023). https://doi.org/10.1016/j.mtsust.2023.100512

    Article  Google Scholar 

  17. T. Zhao, Y. Yao, M. Wang, R. Chen, Y. Yu, F. Wu, C. Zhang, Preparation of MnO2-modified graphite sorbents from spent Li-ion batteries for the treatment of water contaminated by lead, cadmium, and silver. ACS Appl. Mater. Interfaces 9, 25369–25376 (2017). https://doi.org/10.1021/acsami.7b07882

    Article  CAS  PubMed  Google Scholar 

  18. A. Sarkar, I.C. Nlebedim, P. Shrotriya, Performance degradation due to anodic failure mechanisms in lithium-ion batteries. J. Power. Sources 502, 13 (2021). https://doi.org/10.1016/j.jpowsour.2020.229145

    Article  CAS  Google Scholar 

  19. X.Q. Meng, Y.L. Xu, H.B. Cao, X. Lin, P.G. Ning, Y. Zhang, Y.G. Garcia, Z. Sun, Internal failure of anode materials for lithium batteries—a critical review. Green Energy Environ. 5, 22–36 (2020). https://doi.org/10.1016/j.gee.2019.10.003

    Article  Google Scholar 

  20. S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52–76 (2016). https://doi.org/10.1016/j.carbon.2016.04.008

    Article  CAS  Google Scholar 

  21. H. Wang, Y. Huang, C. Huang, X. Wang, K. Wang, H. Chen, S. Liu, Y. Wu, K. Xu, W. Li, Reclaiming graphite from spent lithium ion batteries ecologically and economically. Electrochim. Acta 313, 423–431 (2019). https://doi.org/10.1016/j.electacta.2019.05.050

    Article  CAS  Google Scholar 

  22. N. Cao, Y. Zhang, L. Chen, W. Chu, Y. Huang, Y. Jia, M. Wang, An innovative approach to recover anode from spent lithium-ion battery. J. Power. Sources (2021). https://doi.org/10.1016/j.jpowsour.2020.229163

    Article  Google Scholar 

  23. R. Zhan, Z. Yang, I. Bloom, L. Pan, Significance of a solid electrolyte interphase on separation of anode and cathode materials from spent Li-ion batteries by froth flotation. ACS Sustain. Chem. Eng. 9, 531–540 (2020). https://doi.org/10.1021/acssuschemeng.0c07965

    Article  CAS  Google Scholar 

  24. D.S. Ruan, F.M. Wang, L. Wu, K. Du, Z.H. Zhang, K. Zou, X.F. Wu, G.R. Hu, A high-performance regenerated graphite extracted from discarded lithium-ion batteries. New J. Chem. 45, 1535–1540 (2021). https://doi.org/10.1039/d0nj05434h

    Article  CAS  Google Scholar 

  25. J.J. Roy, E.J.J. Tang, M.P. Do, B. Cao, M. Srinivasan, Closed-loop graphite recycling from spent lithium-ion batteries through bioleaching. ACS Sustain. Chem. Eng. 11, 6567–6577 (2023). https://doi.org/10.1021/acssuschemeng.2c07262

    Article  CAS  Google Scholar 

  26. H.H. Tian, M. Graczyk-Zajac, D.M. De Carolis, C.M. Tian, E. Ricohermoso, Z.W. Yang, W. Li, M. Wilamowska-Zawlocka, J.P. Hofmann, A. Weidenkaff, R. Riedel, A facile strategy for reclaiming discarded graphite and harnessing the rate capabilities of graphite anodes. J. Hazard. Mater. (2023). https://doi.org/10.1016/j.jhazmat.2022.130607

    Article  PubMed  Google Scholar 

  27. X.D. Zhu, J. Xiao, Q.Y. Mao, Z.H. Zhang, Z.H. You, L. Tang, Q.F. Zhong, A promising regeneration of waste carbon residue from spent lithium-ion batteries via low-temperature fluorination roasting and water leaching. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2021.132703

    Article  PubMed  PubMed Central  Google Scholar 

  28. C. Yi, P. Ge, X. Wu, W. Sun, Y. Yang, Tailoring carbon chains for repairing graphite from spent lithium-ion battery toward closed-circuit recycling. J. Energy Chem. 72, 97–107 (2022). https://doi.org/10.1016/j.jechem.2022.05.002

    Article  CAS  Google Scholar 

  29. Y. Xiao, J. Li, W. Huang, L. Wang, J. Luo, Green & efficient regeneration of graphite anode from spent lithium ion batteries enabled by asphalt coating. J. Mater. Sci.: Mater. Electron. 33, 16740–16752 (2022). https://doi.org/10.1007/s10854-022-08533-x

    Article  CAS  Google Scholar 

  30. H.J. Yu, H.L. Dai, Y. Zhu, H.W. Hu, R.R. Zhao, B.B. Wu, D.C. Chen, Mechanistic insights into the lattice reconfiguration of the anode graphite recycled from spent high-power lithium-ion batteries. J. Power. Sources (2021). https://doi.org/10.1016/j.jpowsour.2020.229159

    Article  Google Scholar 

  31. R.D. Hunter, J. Ramirez-Rico, Z. Schnepp, Iron-catalyzed graphitization for the synthesis of nanostructured graphitic carbons. J. Mater. Chem. A 10, 4489–4516 (2022). https://doi.org/10.1039/d1ta09654k

    Article  CAS  Google Scholar 

  32. M. Inagaki, M. Toyoda, T. Tsumura, Control of crystalline structure of porous carbons. RSC Adv. 4, 41411–41424 (2014). https://doi.org/10.1039/c4ra06730d

    Article  CAS  Google Scholar 

  33. M. Sevilla, C. Sanchis, T. Valdes-Solis, E. Morallon, A.B. Fuertes, Direct synthesis of graphitic carbon nanostructures from saccharides and their use as electrocatalytic supports. Carbon 46, 931–939 (2008). https://doi.org/10.1016/j.carbon.2008.02.019

    Article  CAS  Google Scholar 

  34. G. Hasegawa, K. Kanamori, K. Nakanishi, Facile preparation of macroporous graphitized carbon monoliths from iron-containing resorcinol-formaldehyde gels. Mater. Lett. 76, 1–4 (2012). https://doi.org/10.1016/j.matlet.2012.02.069

    Article  CAS  Google Scholar 

  35. C.G. Zhang, J.J. Li, C.S. Shi, C.N. He, E.Z. Liu, N.Q. Zhao, Effect of Ni, Fe and Fe-Ni alloy catalysts on the synthesis of metal contained carbon nano-onions and studies of their electrochemical hydrogen storage properties. J. Energy Chem. 23, 324–330 (2014). https://doi.org/10.1016/S2095-4956(14)60154-6

    Article  CAS  Google Scholar 

  36. Y. Lei, Z.H. Huang, W.C. Shen, Y.P. Zheng, F.Y. Kang, Synthesis of porous graphitic carbon from mesocarbon microbeads by one-step route. J. Porous Mater. 20, 1323–1328 (2013). https://doi.org/10.1007/s10934-013-9717-z

    Article  CAS  Google Scholar 

  37. X. Guo, Y.X. Liu, X.D. Tian, Z.C. Tao, X. Yan, Z.J. Liu, In situ Ti assisted graphitization approach for the preparation of graphite foam with light weight and high thermal conductivity. RSC Adv. 13, 6075–6086 (2023). https://doi.org/10.1039/d2ra06164c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. E. Thompson, A.E. Danks, L. Bourgeois, Z. Schnepp, Iron-catalyzed graphitization of biomass. Green Chem. 17, 551–556 (2015). https://doi.org/10.1039/c4gc01673d

    Article  CAS  Google Scholar 

  39. L. Chen, Z.Y. Wang, C.N. He, N.Q. Zhao, C.S. Shi, E.Z. Liu, J.J. Li, Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 9537–9545 (2013). https://doi.org/10.1021/am402368p

    Article  CAS  PubMed  Google Scholar 

  40. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  41. Q. Yan, J. Li, X. Zhang, E.B. Hassan, C. Wang, J. Zhang, Z. Cai, Catalytic graphitization of kraft lignin to graphene-based structures with four different transitional metals. J. Nanopart. Res. (2018). https://doi.org/10.1007/s11051-018-4317-0

    Article  Google Scholar 

  42. C.W. Huang, L.C. Hsu, Y.Y. Li, Synthesis of carbon nanofibres from a liquid solution containing both catalyst and polyethylene glycol. Nanotechnology 17, 4629–4634 (2006). https://doi.org/10.1088/0957-4484/17/18/016

    Article  CAS  PubMed  Google Scholar 

  43. X.H. Zhong, W. Liu, J.W. Han, F. Jiao, W.Q. Qin, T. Liu, Pretreatment for the recovery of spent lithium ion batteries: theoretical and practical aspects. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.121439

    Article  Google Scholar 

  44. D. Voiry, J. Yang, J. Kupferberg, R. Fullon, C. Lee, H.Y. Jeong, H.S. Shin, M. Chhowalla, High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353, 1413–1416 (2016). https://doi.org/10.1126/science.aah3398

    Article  CAS  PubMed  Google Scholar 

  45. C.Y. Zhang, X.M. Zhong, P. Chen, S.J. Sun, Y. Jiang, X.M. Yan, Facile synthesis of porous graphite by calcium carbide and nitrogen gas for lithium-ion batteries. J. Energy Storage (2023). https://doi.org/10.1016/j.est.2023.107386

    Article  Google Scholar 

  46. J. Yang, X.Y. Zhou, Y.L. Zou, J.J. Tang, A hierarchical porous carbon material for high power, lithium ion batteries. Electrochim. Acta 56, 8576–8581 (2011). https://doi.org/10.1016/j.electacta.2011.07.047

    Article  CAS  Google Scholar 

  47. J. Yang, E. Fan, J. Lin, F. Arshad, X. Zhang, H. Wang, F. Wu, R. Chen, L. Li, Recovery and reuse of anode graphite from spent lithium-ion batteries via citric acid leaching. ACS Appl. Energy Mater. 4, 6261–6268 (2021). https://doi.org/10.1021/acsaem.1c01029

    Article  CAS  Google Scholar 

  48. B. Markey, M. Zhang, I. Robb, P. Xu, H. Gao, D. Zhang, J. Holoubek, D. Xia, Y. Zhao, J. Guo, M. Cai, Y.S. Meng, Z. Chen, Effective upcycling of graphite anode: healing and doping enabled direct regeneration. J. Electrochem. Soc. (2020). https://doi.org/10.1149/1945-7111/abcc2f

    Article  Google Scholar 

  49. A. Davoodabadi, J. Li, Y. Liang, D.L. Wood, T.J. Singler, C. Jin, Analysis of electrolyte imbibition through lithium-ion battery electrodes. J. Power. Sources 424, 193–203 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.115

    Article  CAS  Google Scholar 

  50. P. Liu, J. Wang, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, P. Finamore, Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses. J. Electrochem. Soc. 157, A499–A507 (2010). https://doi.org/10.1149/1.3294790

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Science and technology innovation plan of Hunan Province (No.2022RC1086), the Youth Foundation of Hunan Province (2021JJ40762), Natural Science Foundation of Hunan Province (2021JJ30794), Excellent youth funding of Hunan Provincial Education Department (Grant No. 22B0677). The authors would like to thank Ms. Luyu Zhang from Shiyanjia Lab (www.shiyanjia.com) for the XPS test.

Funding

This work is supported by the Science and technology innovation plan of Hunan Province (Grant No. 2022RC1086), the Youth Foundation of Hunan Province (Grant No. 2021JJ40762), Natural Science Foundation of Hunan Province (Grant No. 2021JJ30794), Excellent youth funding of Hunan Provincial Education Department (Grant No. 22B0677).

Author information

Authors and Affiliations

Authors

Contributions

Zhengyi Li: conceptualization, methodology, data curation, writing—original draft. Jian Li: supervision, writing—review & editing. Lihua Wang: investigation, writing—review & editing.

Corresponding author

Correspondence to Jian Li.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3989 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, J. & Wang, L. Renewed graphite for high-performance lithium-ion batteries: catalytic graphitization approach. J Mater Sci: Mater Electron 35, 599 (2024). https://doi.org/10.1007/s10854-024-12370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12370-5

Navigation