Skip to main content
Log in

Investigations on effect of Mn doping on the photocatalytic properties CdS nanoparticles for effective degradation of organic pollutants and enhanced production of solar fuels

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent decades, photocatalysts have garnered increasing attention for their potential to address environmental issues and offer alternative energy sources. Recognizing the significance of this progress, our research focuses on synthesizing highly efficient photocatalysts for applications in photocatalytic hydrogen evolution and dye degradation. In this study, we synthesized highly effective Mn-doped CdS nanostructured photocatalysts using the ultrasonication method. The synthesized photocatalyst was characterized using various methods, such as X-ray diffraction (XRD), UV–Vis, Photoluminescence, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy. Indeed, the XRD and SEM analyses reveal that the hexagonal wurtzite CdS structure consists of uneven-sized sphere-like grains that are strongly interconnected with each other to form nanostructure with an average diameter of approximately 30 to 35 nm was observed distinctly. UV analysis reveal that the interaction of CdS nanoparticles with Mn has reduced the optical band gap of CdS from 2.31 to 2.42 eV and enhanced the charge carrier separation process. XPS spectra revealed the presence of Cd2+ and Mn2+ valence states in Mn-doped hexagonal wurtzite CdS. After that, studies on hydrogen production and photocatalytic dye degradation with methylene blue (MB) were conducted employing the photocatalyst. The 6% Mn-doped CdS outperformed the pristine CdS in terms of hydrogen generation activity when exposed to visible light from a solar simulator and exhibiting outstanding photocatalytic activity in the degradation of MB. The improved performance can be attributed to the enhanced light absorption capacity and efficient charge separation achieved through the introduction of Mn in CdS, which also functions as co-catalysts. This study paves the way for the development of low-cost yet highly efficient photocatalysts for the protection of environment as well as production of energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig. 5
Fig.6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig.11

Similar content being viewed by others

Data availability

All data analyzed during the study are included in this article and will be made upon reasonable request.

References

  1. M.K. Anser, W. Iqbal, U.S. Ahmad, A. Fatima, I.S. Chaudhry, Environ. Sci. Pollut. Res. 27, 29451 (2020)

    Article  CAS  Google Scholar 

  2. W. Liu, L. Sun, Z. Li, M. Fujii, Y. Geng, L. Dong, T. Fujita, Environ. Sci. Pollut. Res. 27, 31092 (2020)

    Article  CAS  Google Scholar 

  3. M. Ismael, Sol. Energy 211, 522 (2020)

    Article  CAS  Google Scholar 

  4. M. Rafique, R. Mubashar, M. Irshad, S.S.A. Gillani, M.B. Tahir, N.R. Khalid, M.A. Shehzad, J. Inorg. Organomet. Polym. Mater. 30, 3837 (2020)

    Article  CAS  Google Scholar 

  5. U.M. Nisha, M.N. Meeran, R. Sethupathi, V. Subha, P. Rajeswaran, P. Sivakarthik, J. Indian Chem. Soc. 100(8), 101061 (2023)

    Article  CAS  Google Scholar 

  6. K. Fouad, M. Bassyouni, M.G. Alalm, M.Y. Saleh, Appl. Phys. A 127(8), 612 (2021)

    Article  CAS  Google Scholar 

  7. P. Thamizhazhagan, P. Sivakarthik, J. Balaji, Digest J. Nanomater. Biostruct. (DJNB) 16(4), 1263 (2021)

    Article  Google Scholar 

  8. D. Ramki, M. Dharmendira Kumar, P. Siva Karthik, J. Mater. Sci.: Mater. Electron. 34(6), 551 (2023)

    CAS  Google Scholar 

  9. H.S. Mahdi, A. Parveen, S. Agrawal, A. Azam, AIP conference proceedings (AIP Publishing, New York, 2017)

    Google Scholar 

  10. S. Ali, F. Akbar Jan, R. Ullah, N. Ullah, Water Sci. Technol. 85(4), 1040 (2022)

    Article  CAS  PubMed  Google Scholar 

  11. S. Sharma, V. Dutta, P. Raizada, A. Hosseini-Bandegharaei, P. Singh, V.H. Nguyen, Environ. Chem. Lett. 19, 271 (2021)

    Article  CAS  Google Scholar 

  12. L. Ma, X. Ai, X. Yang, X. Cao, D. Han, X. Song, X. Wu, J. Mater. Sci. 56, 8643 (2021)

    Article  CAS  Google Scholar 

  13. Y. Chen, Y. Wang, X. Zhou, Y. Zhao, W. Peng, Environ. Sci. Pollut. Res. 27, 26810 (2020)

    Article  CAS  Google Scholar 

  14. C. Deng, F. Ye, T. Wang, X. Ling, L. Peng, H. Yu, Y. Han, Nano Res. (2022). https://doi.org/10.1007/s12274-021-3960-4

    Article  PubMed  PubMed Central  Google Scholar 

  15. X. Li, M. Edelmannová, P. Huo, K. Kočí, J. Mater. Sci. 55(8), 3299–3313 (2020)

    Article  CAS  Google Scholar 

  16. M. Rani, U.K. Shanker, Int. J. Environ. Sci. Technol. 20(5), 5491 (2023)

    Article  CAS  Google Scholar 

  17. F.B. Rizwan, F. Behlil, R.A.Z.A. Maamir, S. Anjum, Sains Malays. 49(8), 1875 (2020)

    Article  Google Scholar 

  18. A.U. Rahman, H. Ullah, M. Verma, S. Khan, J. Magn. Magn. Mater. 515, 167212 (2020)

    Article  Google Scholar 

  19. S.M. Ali, M.M. Khan, T.S. Alkhuraiji, J. Mater. Sci.: Mater. Electron. 31, 14901 (2020)

    CAS  Google Scholar 

  20. A. Rafiq, M. Imran, M. Aqeel, M. Naz, M. Ikram, S. Ali, J. Inorg. Organomet. Polym Mater. 30, 1915 (2020)

    Article  CAS  Google Scholar 

  21. N. Saxena, H. Sondhi, R. Sharma, M. Joshi, S. Amirthapandian, P. Rajput, R. Krishna, Chem. Phys. Impact 5, 100119 (2022)

    Article  Google Scholar 

  22. R. Shi, H.F. Ye, F. Liang, Z. Wang, K. Li, Y. Weng, Y. Chen, Adv. Mater. 30(6), 1705941 (2018)

    Article  Google Scholar 

  23. Z. Chai, T.T. Zeng, Q. Li, L.Q. Lu, W.J. Xiao, D. Xu, J. Am. Chem. Soc. 138(32), 10128 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. M. Thambidurai, N. Muthukumarasamy, D. Velauthapillai, S. Agilan, R. Balasundaraprabhu, J. Electron. Mater. 41, 665 (2012)

    Article  CAS  Google Scholar 

  25. J. Zhao, X. Li, Z. Li, J. Nanomater. 16(1), 191 (2015)

    Google Scholar 

  26. B. Ahmed, A.K. Ojha, S. Kumar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 179, 144 (2017)

    Article  CAS  Google Scholar 

  27. V. Kumar, K. Kumar, H.C. Jeon, T.W. Kang, D. Lee, S. Kumar, J. Phys. Chem. Solids 124, 1 (2019)

    Article  CAS  Google Scholar 

  28. B.K. Nahak, R. Roshan, S.D. Roy, A. Patra, A. Sahu, S. Panda, S. Mahata, J. Mater. Sci.: Mater. Electron. 33(18), 15191 (2022)

    CAS  Google Scholar 

  29. A.M. Mansour, R.S. Ibrahim, A.A. Azab, J. Mater. Sci.: Mater. Electron. 33(13), 10251 (2022)

    CAS  Google Scholar 

  30. A.K. Singh, K.M. Vijayashri, S.P. Singh, M.K. Mishra, Mater. Today: Proc. 66, 2017 (2022)

    CAS  Google Scholar 

  31. R.S. Ibrahim, A.A. Azab, A.M. Mansour, J. Mater. Sci.: Mater. Electron. 32(14), 19980 (2021)

    CAS  Google Scholar 

  32. A. Nag, S. Sapra, C. Nagamani, A. Sharma, N. Pradhan, S.V. Bhat, D.D. Sarma, Chem. Mater. 19(13), 3252 (2007)

    Article  CAS  Google Scholar 

  33. K.L. Mary, J.V. Manonmoni, A.M.R. Balan, P.S. Karthik, S.P. Malliappan, Digest J. Nanomater. Biostruct. (DJNB) 17(2), 634 (2022)

    Article  Google Scholar 

  34. K.O. Potapenko, E.Y. Gerasimov, S.V. Cherepanova, A.A. Saraev, E.A. Kozlova, Materials 15(22), 8026 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. E. Bladt, R.J. van Dijk-Moes, J. Peters, F. Montanarella, C. de Mello Donega, D. Vanmaekelbergh, S. Bals, J. Am. Chem. Soc. 138(43), 14288 (2016)

    Article  CAS  PubMed  Google Scholar 

  36. C.F. Holder, R.E. Schaak, ACS Nano 13(7), 7359 (2019)

    Article  CAS  PubMed  Google Scholar 

  37. S. Chaure, Mater. Res. Express 6(2), 025912 (2018)

    Article  Google Scholar 

  38. K.K. Saravanan, P. SivaKarthik, J. Clust. Sci. 31(2), 401 (2020)

    Article  CAS  Google Scholar 

  39. R.S. Singh, S. Bhushan, Bull. Mater. Sci. 32, 125 (2009)

    Article  CAS  Google Scholar 

  40. A.K. Guria, N. Pradhan, Chem. Mater. 28(15), 5224 (2016)

    Article  CAS  Google Scholar 

  41. L. Wu, X. Cai, K. Nelson, W. Xing, J. Xia, R. Zhang, D. Pan, Nano Res. 6, 312 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. A.E. Vikraman, A.R. Jose, M. Jacob, K.G. Kumar, Anal. Methods 7(16), 6791 (2015)

    Article  Google Scholar 

  43. S. Kumar, S. Kumar, S. Jain, N.K. Verma, Appl. Nanosci. 2, 127 (2012)

    Article  Google Scholar 

  44. R.K. Duchaniya, Int. J. Mining Metall. Mechan. Eng. (IJMMME) 2, 1 (2014)

    Google Scholar 

  45. T. Iqbal, G. Ara, N.R. Khalid, M. Ijaz, Appl. Nanosci. 10, 22 (2020)

    Google Scholar 

  46. H. Cui, B. Li, Y. Zhang, X. Zheng, X. Li, Z. Li, S. Xu, Int. J. Hydrogen Energy 43(39), 18242 (2018)

    Article  CAS  Google Scholar 

  47. C. Hu, X. Zeng, J. Cui, H. Chen, J. Lu, J. Phys. Chem. C 117(40), 20998 (2013)

    Article  CAS  Google Scholar 

  48. Y. Sanchez, M. Neuschitzer, M. Dimitrievska, M. Espindola-Rodriguez, J. Lopez-Garcia, V. Izquierdo-Roca, E. Saucedo, IEEE 40th photovoltaic specialist conference (PVSC) (IEEE, 2014), p.0417

    Book  Google Scholar 

  49. K.K. Saravanan, P. Siva Karthik, P.R. Mirtha, J. Balaji, B. Rajeshkanna, J. Mater. Sci.: Mater. Electron. 31, 8825 (2020)

    CAS  Google Scholar 

  50. S.K. Shinde, H.D. Dhaygude, P.P. Chikode, V.J. Fulari, J. Mater. Sci.: Mater. Electron. 28, 7385 (2017)

    CAS  Google Scholar 

  51. A.B.A. Hammad, H.S. Magar, A.M. Mansour, R.Y. Hassan, A.M.E. Nahrawy, Sci. Rep. 13(1), 9048 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. B. Liu, G.Q. Xu, L.M. Gan, C.H. Chew, W.S. Li, Z.X. Shen, J. Appl. Phys. 89(2), 1059 (2001)

    Article  CAS  Google Scholar 

  53. G.Q. Xu, B. Liu, S.J. Xu, C.H. Chew, S.J. Chua, L.M. Gana, J. Phys. Chem. Solids 61(6), 829 (2000)

    Article  CAS  Google Scholar 

  54. L. Li, X. Yin, Y. Sun, Sep. Purif. Technol. 212, 135 (2019)

    Article  CAS  Google Scholar 

  55. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257(7), 2717 (2011)

    Article  CAS  Google Scholar 

  56. Y. Dong, L. Kong, P. Jiang, G. Wang, N. Zhao, H. Zhang, B. Tang, ACS Sustain. Chem. Eng. 5(8), 6845 (2017)

    Article  CAS  Google Scholar 

  57. A. Han, H. Chen, H. Zhang, Z. Sun, P. Du, J. Mater. Chem. A 4(26), 10195 (2016)

    Article  CAS  Google Scholar 

  58. D. Zhu, C. Guo, J. Liu, L. Wang, Y. Du, S.Z. Qiao, Chem. Commun. 53(79), 10906 (2017)

    Article  CAS  Google Scholar 

  59. P. Nagababu, S.A.M. Ahmed, Y.T. Prabhu, A. Kularkar, S. Bhowmick, S.S. Rayalu, Sci. Rep. 11(1), 8084 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. L. Korala, J.R. Germain, E. Chen, I.R. Pala, D. Li, S.L. Brock, Inorg. Chem. Front. 4(9), 1451 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. M.M. Ali, M.A. Kudhier, R.S. Sabry, J. Phys.: Conf. Ser. 1963(1), 012119 (2021)

    CAS  Google Scholar 

  62. R. Chauhan, A. Kumar, R.P. Chaudhary, Res. Chem. Intermed. 39, 645 (2013)

    Article  CAS  Google Scholar 

  63. C. Zhang, J. Lai, J. Hu, RSC Adv. 5(20), 15110 (2015)

    Article  CAS  Google Scholar 

  64. Z. Pan, S. Wang, R. Yan, C. Song, Y. Jin, G. Huang, J. Huang, Opt. Mater. 109, 110324 (2020)

    Article  CAS  Google Scholar 

  65. S.M. Al-Jawad, N.J. Imran, K.H. Aboud, J. Sol–Gel Sci. Technol. 100, 423 (2021)

    Article  CAS  Google Scholar 

  66. S. Panda, A. Sahu, A. Patra, B.K. Nahak, B.N. Patra, S.S. Mahato, S. Mahata, Mater. Today: Proc. 47, 1197 (2021)

    CAS  Google Scholar 

  67. B.K. Nahak, D. Mahata, N. Jhariya, P. Yadav, S. Panda, S.S. Sahu, S. Mahata, Ceram. Int. 49(19), 32104 (2023)

    Article  CAS  Google Scholar 

  68. F. Beshkar, A. Al-Nayili, O. Amiri, M. Salavati-Niasari, M. Mousavi-Kamazani, Int. J. Hydrogen Energy 47(2), 928 (2022)

    Article  CAS  Google Scholar 

  69. P. SivaKarthik, V. Thangaraj, S. Kumaresan, K. Vallalperuman, J. Mater. Sci.: Mater. Electron. 28, 10582 (2017)

    CAS  Google Scholar 

  70. P. Rajeswaran, M. Shanmuganathan, A. Elavarasan, P. Sivakarthik, Mater. Today: Proc. 80, 634 (2023)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors did not receive any financial support for conducting the research, contributing to the authorship, or publishing this article.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

VS, performed conceptualization, formal analysis. TA provided support for funding acquisition for the research work and contributed to the revision and editing of the manuscript. TK performed reviewing and editing the manuscript. SJR coordinating the research activity, including planning and data validation.

Corresponding author

Correspondence to V. Subha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subha, V., Aravind, T., Kamatchi, T. et al. Investigations on effect of Mn doping on the photocatalytic properties CdS nanoparticles for effective degradation of organic pollutants and enhanced production of solar fuels. J Mater Sci: Mater Electron 35, 479 (2024). https://doi.org/10.1007/s10854-024-12268-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12268-2

Navigation