Skip to main content
Log in

Investigation of structural, electrical and electrochemical properties of La0.8Sr0.2Mn1−xScxO3−δ as cathode on yttria-stabilized zirconia electrolyte for intermediate temperature solid oxide fuel cell fabricated by one step dry pressing method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

La0.8Sr0.2Mn1−xScxO3−δ perovskite oxides (x = 0.00, 0.05, 0.10, 0.15) were systematically examined as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). This study encompassed structural attributes, temperature-dependent weight variations, the electrical conductivity of La0.8Sr0.2Mn1−xScxO3−δ compositions, and the single-cell electrochemical performance of La0.8Sr0.2Mn1−xScxO3−δ on yttria-stabilized zirconia (YSZ). Further characterizations were carried out through powder X-ray diffraction (XRD), thermogravimetric analysis, DC four-probe method, and impedance spectroscopy, respectively. The X-ray diffraction (XRD) analysis revealed a clear correlation between the increase in Sc3+ content at the B-site and an increase in both the lattice parameter and lattice volume. The electrical conductivity of La0.8Sr0.2Mn1−xScxO3−δ compounds at 750 °C were found to be 137.941, 198.07, 119.789, and 61.036 S cm−1 for x = 0.00, x = 0.05, x = 0.10, and x = 0.15, respectively. When combined with YSZ in a single cell, the area-specific resistances for La0.8Sr0.2Mn1−xScxO3−δ were varied between 0.56 and 2.2 Ω cm2. La0.8Sr0.2Mn0.95Sc0.05O3−δ exhibited enhanced electrocatalytic activity, with an exchange current density of 39.35 mA cm−2 at 750 °C suggesting the composition as a potential candidate for cathode material in IT-SOFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. C. Yao, J. Yang, H. Zhang, X. Lang, K. Cai, Ceram. Int. 48, 7652 (2022)

    Article  CAS  Google Scholar 

  2. L. Da Conceião, A.M. Silva, N.F.P. Ribeiro, M.M.V.M. Souza, Mater. Res. Bull. 46, 308 (2011)

    Article  Google Scholar 

  3. H. E. Aysal, F. Kılıç, G. Çakmak, and T. Öztürk, Int. J. Hydrogen. Energy. 51, 1477 (2024)

    Article  CAS  Google Scholar 

  4. J. Cavazzani, A. Bedon, G. Carollo, M. Rieu, J.P. Viricelle, A. Glisenti, ACS Appl. Energy Mater. 6, 141 (2023)

    Article  CAS  PubMed  Google Scholar 

  5. Z. Yáng, A.S. Harvey, A. Infortuna, J. Schoonman, L.J. Gauckler, J. Solid State Electrochem. 15, 277 (2011)

    Article  Google Scholar 

  6. W.C.J. Wei, D.R. Huang, D. Wang, Materials (Basel) 9, 1 (2016)

    Google Scholar 

  7. W. Xia, X. Liu, F. Jin, X. Jia, Y. Shen, J. Li, Electrochim. Acta. 364, 137274 (2020)

    Article  CAS  Google Scholar 

  8. Y. Zhang, H. Zhao, Z. Du, K. Świerczek, Y. Li, Chem. Mater. 31, 3784 (2019)

    Article  CAS  Google Scholar 

  9. W. Sun, P. Li, C. Xu, L. Dong, J. Qiao, Z. Wang, D. Rooney, K. Sun, J. Power Sources. 343, 237 (2017)

    Article  CAS  Google Scholar 

  10. H. Gu, Y. Zheng, R. Ran, Z. Shao, W. Jin, N. Xu, J. Ahn, J. Power Sources. 183, 471 (2008)

    Article  CAS  Google Scholar 

  11. Y. Zheng, R. Ran, H. Gu, R. Cai, Z. Shao, J. Power Sources. 185, 641 (2008)

    Article  CAS  Google Scholar 

  12. X. Yue, A. Yan, M. Zhang, L. Liu, Y. Dong, M. Cheng, J. Power Sources. 185, 691 (2008)

    Article  CAS  Google Scholar 

  13. O.A. Abubaker, K. Singh, V. Thangadurai, J. Power Sources. 451, 227777 (2020)

    Article  CAS  Google Scholar 

  14. A. Javed, D. Sikstrom, V. Thangadurai, Int. J. Hydrog. Energy 48, 18906 (2023)

    Article  CAS  Google Scholar 

  15. Y.C. Wu, T.Y. Ye, Z. Zhou, Int. J. Hydrog. Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.03.358

    Article  Google Scholar 

  16. F. Yadollahi Farsani, M. Jafari, E. Shahsavari, H. Shakeripour, H. Salamati, Int. J. Hydrog. Energy 45, 8915 (2020)

    Article  CAS  Google Scholar 

  17. Y. Wu, X. Wang, L. Li, J. Am. Ceram. Soc. 94, 2518 (2011)

    Article  CAS  Google Scholar 

  18. P. Zeng, R. Ran, Z. Chen, W. Zhou, H. Gu, Z. Shao, S. Liu, J. Alloys Compd. 455, 465 (2008)

    Article  CAS  Google Scholar 

  19. B.H. Toby, R.B. Von Dreele, J. Appl. Crystallogr. 46, 544 (2013)

    Article  CAS  Google Scholar 

  20. K. Jo, J. Ha, J. Ryu, E. Lee, E. H. Lee, Appl. Sci. 2021, 11, 4963. https://doi.org/10.3390/app11114963

    Article  Google Scholar 

  21. L. Zhang, S. Tao, Int. J. Hydrogen Energy. 36, 14643 (2011)

    Article  CAS  Google Scholar 

  22. X. Zhu, Z. Lü, B. Wei, X. Huang, Y. Zhang, W. Su, J. Power Sources. 196, 729 (2011)

    Article  CAS  Google Scholar 

  23. M. Mohsin, A. Yousaf, R. Raza, R. Zia, J. Alloys Compd. 791, 248 (2019)

    Article  CAS  Google Scholar 

  24. Z. Tayyab, S.U. Rehman, I. Shakir, M.A. Khan, N. Mushtaq, F. Alvi, S. Rauf, A. Khan, M. Fatima, R. Raza, Mater. Res. Express. 7, 0 (2019)

    Google Scholar 

  25. B. K. Sonu, U. K. Bhadra, and E. Rout, Mater. Today Proc. 91, 19 (2023)

  26. L. Gan, L. Ye, M. Liu, S. Tao, K. Xie, RSC Adv. 6, 641 (2015)

    Article  Google Scholar 

  27. H.J. Choi, M. Kwak, T.W. Kim, D.W. Seo, S.K. Woo, S.D. Kim, Ceram. Int. 43, 7929 (2017)

    Article  CAS  Google Scholar 

  28. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)

    Article  Google Scholar 

  29. Y.M. Yin, M.W. Xiong, N.T. Yang, Z. Tong, Y.Q. Guo, Z.F. Ma, E. Sun, J. Yamanis, B.Y. Jing, Int. J. Hydrog. Energy 36, 3989 (2011)

    Article  CAS  Google Scholar 

  30. X.C. Liu, R. Hong, C. Tian, J. Mater. Sci. Mater. Electron. 20, 323 (2009)

    Article  CAS  Google Scholar 

  31. B.K. Sonu, E. Sinha, J. Alloys Compd. 860, 158471 (2021)

    Article  CAS  Google Scholar 

  32. H. Zhao, W. Shen, Z. Zhu, X. Li, Z. Wang, J. Power Sources. 182, 503 (2008)

    Article  CAS  Google Scholar 

  33. H. Patra, S.K. Rout, S.K. Pratihar, S. Bhattacharya, Int. J. Hydrog. Energy 36, 11904 (2011)

    Article  CAS  Google Scholar 

  34. T. Noh, J. Ryu, J. Kim, Y.N. Kim, H. Lee, J. Alloys Compd. 557, 196 (2013)

    Article  CAS  Google Scholar 

  35. M.K. Rout, S. Keshri, J. Alloys Compd. 965, 171425 (2023)

    Article  CAS  Google Scholar 

  36. J. Zan, S. Wang, D. Zheng, F. Li, W. Chen, Q. Pei, L. Jiang, Mater. Res. Bull. 137, 111173 (2021)

    Article  CAS  Google Scholar 

  37. A. Žužić, L. Pavić, A. Bafti, S. Marijan, J. Macan, A. Gajović, J. Alloys Compd. (2023). https://doi.org/10.1016/j.jallcom.2022.167949

    Article  Google Scholar 

  38. C. Zener, Phys. Rev. 82, 403 (1951)

    Article  CAS  Google Scholar 

  39. S. Sydyknazar, V. Cascos, L. Troncoso, A.L. Larralde, M.T. Fernández-Díaz, J.A. Alonso, Materials (Basel) (2019). https://doi.org/10.3390/ma12121957

    Article  PubMed  Google Scholar 

  40. B. Pan, H. Miao, F. Liu, M. Wu, J. Yuan, Int. J. Hydrog. Energy 48, 11045 (2023)

    Article  CAS  Google Scholar 

  41. A.K. Baral, Y. Tsur, V. Thangadurai, Ceram. Int. 45, 1641 (2019)

    Article  CAS  Google Scholar 

  42. X. Ding, X. Kong, J. Jiang, C. Cui, X. Guo, Mater. Res. Bull. 45, 1271 (2010)

    Article  CAS  Google Scholar 

  43. J. Bai, D. Zhou, X. Zhu, N. Wang, Q. Liang, R. Chen, H. Lu, J. Li, W. Yan, Ceram. Int. 49, 28682 (2023)

    Article  CAS  Google Scholar 

  44. X. Ding, X. Kong, J. Jiang, C. Cui, L. Guo, Int. J. Hydrog. Energy 35, 1742 (2010)

    Article  CAS  Google Scholar 

  45. F. Qiang, K.N. Sun, N.Q. Zhang, X.D. Zhu, S.R. Le, D.R. Zhou, J. Power Sources. 168, 338 (2007)

    Article  CAS  Google Scholar 

  46. X. Song, S. Le, X. Zhu, L. Qin, Y. Luo, Y. Li, K. Sun, Y. Chen, Int. J. Hydrog. Energy 42, 15808 (2017)

    Article  CAS  Google Scholar 

  47. M. Wu, H. Cai, F. Jin, N. Sun, J. Xu, L. Zhang, X. Han, S. Wang, X. Su, W. Long, L. Wang, L. Zhang, J. Eur. Ceram. Soc. 41, 2682 (2021)

    Article  CAS  Google Scholar 

  48. X. Fu, M. Liu, X. Meng, S. Lü, D. Wang, Y. Zhang, H. Liu, M. Song, Z. Li, L. Wang, Ionics (Kiel). 26, 1285 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Central Instrumentation Facility (CIF), Birla Institute of Technology, Mesra, for providing the necessary infrastructure for our research. We gratefully acknowledge Prof. S. K. Rout and B. K. Sonu for their overall support and valuable time. The authors deeply appreciate Prof. S. K. Pratihar, Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha, India, for providing the necessary facilities for the DC four-probe experiment.

Funding

No specific funding has been received for this particular research work.

Author information

Authors and Affiliations

Authors

Contributions

GD: Data curation, Methodology, Investigation, Writing/Original Draft Preparation, Writing/ Review & Editing. ER: Conceptualization, Supervision.

Corresponding author

Correspondence to Ela Rout.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, G., Rout, E. Investigation of structural, electrical and electrochemical properties of La0.8Sr0.2Mn1−xScxO3−δ as cathode on yttria-stabilized zirconia electrolyte for intermediate temperature solid oxide fuel cell fabricated by one step dry pressing method. J Mater Sci: Mater Electron 35, 491 (2024). https://doi.org/10.1007/s10854-024-12224-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12224-0

Navigation