Skip to main content
Log in

Electrochemical performance of Mn3O4/graphene composite deposited on nickel foam as promising electrode material for supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The supercapacitor energy storage system has achieved a great attention, in future perspective, as compared to ordinary dielectric capacitors and batteries. The nature and type of electrode material employed in supercapacitor applications is critical to the electrochemical performance of a supercapacitor. Herein, co-precipitation derived Mn3O4 nanoparticles were mixed with graphite in a simple way and obtained uniformly mixed composite of exfoliated graphene with these nanoparticles. The electrochemical study of these composites revealed promising results for supercapacitor applications. X-ray diffraction study revealed the formation of single-phase Mn3O4 nanoparticles. The composite was probed for microstructural examination, by scanning electron microscopy, which revealed that Mn3O4 was uniformly embedded in exfoliated graphene sheets, aimed specifically for better electrochemical performance. The elemental composition was studied by energy dispersive X-rays spectroscopy and electrochemical performance of the composite deposited on Nickel foam for electrode using polyvinyl alcohol (PVA, 10%) as a binder has been examined by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy in 1M K2SO4 electrolyte. In addition, different ratios of Mn3O4/graphene were prepared to investigate composition dependent performance of these composites. The highest value of specific capacitance achieved for composition (1:2) was 334 F/g at scan rate of 5 mVs−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage. Adv. Mater. 22(8), E28–E62 (2010). https://doi.org/10.1002/adma.200903328

    Article  CAS  PubMed  Google Scholar 

  2. H. Wu, J. Mou, L. Zhou, Q. Zheng, N. Jiang, D. Lin, Cloud cap-like, hierarchically porous carbon derived from mushroom as an excellent host cathode for high performance lithium-sulfur batteries. Electrochim. Acta. 212, 1021–1030 (2016). https://doi.org/10.1016/j.electacta.2016.07.153

    Article  CAS  Google Scholar 

  3. M. Saleem, G. Mehboob, M.S. Ahmed, S.N. Khisro, M.Z. Ansar, K. Mehmood, J.M. Ashfaq, Electrochemical properties of tin sulfide nano-sheets as cathode material for lithium-sulfur batteries. Front. Chem. 8, 254 (2020). https://doi.org/10.3389/fchem.2020.00254

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Q. Rong, L.L. Long, X. Zhang, Y.X. Huang, H.Q. Yu, Layered cobalt nickel silicate hollow spheres as a highly-stable supercapacitor material. Appl. Energy. 153, 63–69 (2015). https://doi.org/10.1016/j.apenergy.2014.11.077

    Article  ADS  CAS  Google Scholar 

  6. Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, R.S. Ruoff, Carbon-based supercapacitors produced by activation of graphene. Science. 332(6037), 1537–1541 (2011). https://doi.org/10.1126/Science.1200770

    Article  ADS  CAS  PubMed  Google Scholar 

  7. R. Ramachandran, M. Saranya, V. Velmurugan, B.P. Raghupathy, S.K. Jeong, A.N. Grace, Effect of reducing agent on graphene synthesis and its influence on charge storage towards supercapacitor applications. Appl. Energy. 153, 22–31 (2015). https://doi.org/10.1016/j.apenergy.2015.02.091

    Article  ADS  CAS  Google Scholar 

  8. X. Su, L. Yu, G. Cheng, H. Zhang, M. Sun, L. Zhang, J. Zhang, Controllable hydrothermal synthesis of Cu-doped δ-MnO2 films with different morphologies for energy storage and conversion using supercapacitors. Appl. Energy 134, 439–445 (2014). https://doi.org/10.1016/j.apenergy.2014.08.050

    Article  ADS  CAS  Google Scholar 

  9. J.P. Zheng, P.J. Cygan, T.R. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142(8), 2699 (1995). https://doi.org/10.1149/1.2050077

    Article  ADS  CAS  Google Scholar 

  10. O.S. Yakovenko, L.Y. Matzui, L.L. Vovchenko, O.V. Lozitsky, O.I. Prokopov, O.A. Lazarenko, A.V. Trukhanov, Electrophysical properties of epoxy-based composites with graphite nanoplatelets and magnetically aligned magnetite. Mol. Cryst. Liq. Cryst. 661(1), 68–80 (2018). https://doi.org/10.1080/15421406.2018.1460243

    Article  ADS  CAS  Google Scholar 

  11. W. Li, K. Xu, L. An, F. Jiang, X. Zhou, J. Yang, J. Hu, Effect of temperature on the performance of ultrafine MnO2 nanobelt supercapacitors. J. Mater. Chem. A 2(5), 1443–1447 (2014). https://doi.org/10.1039/C3TA14182A

    Article  CAS  Google Scholar 

  12. Y. Munaiah, B.G.S. Raj, T.P. Kumar, P. Ragupathy, Facile synthesis of hollow sphere amorphous MnO2: the formation mechanism, morphology and effect of a bivalent cation-containing electrolyte on its supercapacitive behavior. J. Mater. Chem. A 1(13), 4300–4306 (2013). https://doi.org/10.1039/C3TA01089A

    Article  CAS  Google Scholar 

  13. S. Devaraj, G.S. Gabriel, S.R. Gajjela, P. Balaya, Mesoporous MnO2 and its capacitive behavior. Electrochem. Solid-State Lett. 15(4), A57 (2012). https://doi.org/10.1149/2.016204esl

    Article  CAS  Google Scholar 

  14. S. Chen, F. Liu, Q. Xiang, X. Feng, G. Qiu, Synthesis of Mn2O3 microstructures and their energy storage ability studies. Electrochim. Acta 106, 360–371 (2013). https://doi.org/10.1016/j.electacta.2013.06.001

    Article  CAS  Google Scholar 

  15. B.G.S. Raj, A.M. Asiri, J.J. Wu, S. Anandan, Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application. J. Alloys Compd. 636, 234–240 (2015). https://doi.org/10.1016/j.jallcom.2015.02.164

    Article  CAS  Google Scholar 

  16. R.K. Selvan, I. Perelshtein, N. Perkas, A. Gedanken, Synthesis of hexagonal-shaped SnO2 nanocrystals and SnO2@C nanocomposites for electrochemical redox supercapacitors. J. Phys. Chem. C 112(6), 1825–1830 (2008). https://doi.org/10.1021/jp076995q

    Article  CAS  Google Scholar 

  17. X. Liu, Q. Long, C. Jiang, B. Zhan, C. Li, S. Liu, X. Dong, Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors. Nanoscale 5(14), 6525–6529 (2013). https://doi.org/10.1039/C3NR00495C

    Article  ADS  CAS  PubMed  Google Scholar 

  18. A. Devadas, S. Baranton, T.W. Napporn, C. Coutanceau, Tailoring of RuO2 nanoparticles by microwave assisted instant method for energy storage applications. J. Power Sources 196(8), 4044–4053 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.149

    Article  ADS  CAS  Google Scholar 

  19. D. Han, P. Xu, X. Jing, J. Wang, P. Yang, Q. Shen, M. Zhang, Trisodium citrate assisted synthesis of hierarchical NiO nanospheres with improved supercapacitor performance. J. Power Sources. 235, 45–53 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.180

    Article  CAS  Google Scholar 

  20. H. Lv, Y. Yuan, Q. Xu, H. Liu, Y.G. Wang, Y. Xia, Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor. J. Power Sources 398, 167–174 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.059

    Article  ADS  CAS  Google Scholar 

  21. T. Yousefi, A.N. Golikand, M.H. Mashhadizadeh, M. Aghazadeh, High temperature and low current density synthesis of Mn3O4 porous nano spheres: characterization and electrochemical properties. Curr. Appl. Phys. 12(2), 544–549 (2012). https://doi.org/10.1016/j.cap.2011.08.018

    Article  ADS  Google Scholar 

  22. V. Subramanian, H. Zhu, B. Wei, Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem. Commun. 8(5), 827–832 (2006). https://doi.org/10.1016/j.elecom.2006.02.027

    Article  CAS  Google Scholar 

  23. L. Li, K.H. Seng, H. Liu, I.P. Nevirkovets, Z. Guo, Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior. Electrochim. Acta 87, 801–808 (2013). https://doi.org/10.1016/j.electacta.2012.08.127

    Article  CAS  Google Scholar 

  24. K. Makgopa, K. Raju, P.M. Ejikeme, K.I. Ozoemena, High-performance Mn3O4/onion-like carbon (OLC) nanohybrid pseudocapacitor: unravelling the intrinsic properties of OLC against other carbon supports. Carbon 117, 20–32 (2017). https://doi.org/10.1016/j.carbon.2017.02.050

    Article  CAS  Google Scholar 

  25. S. Li, L.L. Yu, Y.T. Shi, J. Fan, R.B. Li, G.D. Fan, J.T. Zhao, Greatly enhanced faradic capacities of 3D porous Mn3O4/G composites as lithium-ion anodes and supercapacitors by C–O–Mn bonding. ACS Appl. Mater. Interfaces. 11(10), 10178–10188 (2019). https://doi.org/10.1021/acsami.8b21063

    Article  CAS  PubMed  Google Scholar 

  26. A.V. Trukhanov, V.O. Turchenko, I.A. Bobrikov, S.V. Trukhanov, I.S. Kazakevich, A.M. Balagurov, Crystal structure and magnetic properties of the BaFe12–xAlxO19 (x = 0.1–1.2) solid solutions. J. Magn. Magn. Mater. 393, 253–259 (2015). https://doi.org/10.1016/j.jmmm.2015.05.076

    Article  ADS  CAS  Google Scholar 

  27. M.V. Zdorovets, A.L. Kozlovskiy, D.I. Shlimas, D.B. Borgekov, Phase transformations in FeCo–Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J. Mater. Sci.: Mater. Electron. 32(12), 16694–16705 (2021). https://doi.org/10.1007/s10854-021-06226-5

    Article  CAS  Google Scholar 

  28. E. Iyyamperumal, S. Wang, L. Dai, Vertically aligned BCN nanotubes with high capacitance. ACS nano. 6(6), 5259–5265 (2012). https://doi.org/10.1021/nn301044v

    Article  CAS  PubMed  Google Scholar 

  29. J. Zhu, J. Jiang, Y. Feng, G. Meng, H. Ding, X. Huang, Three-dimensional Ni/SnOx/C hybrid nanostructured arrays for lithium-Ion microbattery anodes with enhanced areal capacity. ACS Appl. Mater. Interfaces 5(7), 2634–2640 (2013). https://doi.org/10.1021/am400055a

    Article  CAS  PubMed  Google Scholar 

  30. J. Luo, X. Xia, Y. Luo, C. Guan, J. Liu, X. Qi, H.J. Fan, Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 3(6), 737–743 (2013). https://doi.org/10.1002/aenm.201200953

    Article  CAS  Google Scholar 

  31. Y. Luo, J. Luo, W. Zhou, X. Qi, H. Zhang, Y.W. Denis, T. Yu, Controlled synthesis of hierarchical graphene-wrapped TiO2@Co3O4 coaxial nanobelt arrays for high-performance lithium storage. J. Mater. Chem. A 1(2), 273–281 (2013). https://doi.org/10.1039/C2TA00064D

    Article  CAS  Google Scholar 

  32. Q. Wang, X. Wang, B. Liu, G. Yu, X. Hou, D. Chen, G. Shen, NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. J. Mater. Chem. A 1(7), 2468–2473 (2013). https://doi.org/10.1039/C2TA01283A

    Article  CAS  Google Scholar 

  33. H. Hu, B. Guan, B. Xia, X.W. Lou, Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J. Am. Chem. Soc. 137(16), 5590–5595 (2015). https://doi.org/10.1021/jacs.5b02465

    Article  CAS  PubMed  Google Scholar 

  34. M. Huang, X.L. Zhao, F. Li, W. Li, B. Zhang, Y.X. Zhang, Synthesis of Co3O4/SnO2@MnO2 core–shell nanostructures for high-performance supercapacitors. J. Mater. Chem. A 3(24), 12852–12857 (2015). https://doi.org/10.1039/C5TA02144H

    Article  CAS  Google Scholar 

  35. Q.J. Le, M. Huang, T. Wang, X.Y. Liu, L. Sun, X.L. Guo, Y.X. Zhang, Biotemplate derived three dimensional nitrogen doped graphene@MnO2 as bifunctional material for supercapacitor and oxygen reduction reaction catalyst. J. Colloid Interface Sci. 544, 155–163 (2019). https://doi.org/10.1016/j.jcis.2019.02.089

    Article  ADS  CAS  PubMed  Google Scholar 

  36. S. Khamlich, T. Mokrani, M.S. Dhlamini, B.M. Mothudi, M. Maaza, Microwave-assisted synthesis of simonkolleite nanoplatelets on nickel foam–graphene with enhanced surface area for high-performance supercapacitors. J. Colloid Interface Sci. 461, 154–161 (2016). https://doi.org/10.1016/j.jcis.2015.09.033

    Article  ADS  CAS  PubMed  Google Scholar 

  37. S. Khamlich, A. Bello, M. Fabiane, B.D. Ngom, N. Manyala, Hydrothermal synthesis of simonkolleite microplatelets on nickel foam-graphene for electrochemical supercapacitors. J. Solid State Electrochem. 17, 2879–2886 (2013). https://doi.org/10.1007/s10008-013-2206-0

    Article  CAS  Google Scholar 

  38. M. Fabiane, S. Khamlich, A. Bello, J. Dangbegnon, D. Momodu, A.T. Charlie Johnson, N. Manyala, Growth of graphene underlayers by chemical vapor deposition. AIP Adv. (2013). https://doi.org/10.1063/1.4834975

    Article  Google Scholar 

  39. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011). https://doi.org/10.1038/nmat3001

    Article  ADS  CAS  PubMed  Google Scholar 

  40. S. Li, L.L. Yu, R.B. Li, J. Fan, J.T. Zhao, Template-free and room-temperature synthesis of 3D sponge-like mesoporous Mn3O4 with high capacitive performance. Energy Storage Mater. 11, 176–183 (2018). https://doi.org/10.1016/j.ensm.2017.07.011

    Article  Google Scholar 

  41. D.A. Vinnik, V.E. Zhivulin, D.P. Sherstyuk, A.Y. Starikov, P.A. Zezyulina, S.A. Gudkova, A.V. Trukhanov, Ni substitution effect on the structure, magnetization, resistivity and permeability of zinc ferrites. J. Mater. Chem. C 9(16), 5425–5436 (2021). https://doi.org/10.1039/D0TC05692H

    Article  CAS  Google Scholar 

  42. D.A. Vinnik, V.E. Zhivulin, D.P. Sherstyuk, A.Y. Starikov, P.A. Zezyulina, S.A. Gudkova, A.V. Trukhanov, Electromagnetic properties of zinc–nickel ferrites in the frequency range of 0.05–10 GHz. Mater. Today Chem. 20, 100460 (2021). https://doi.org/10.1016/j.mtchem.2021.100460

    Article  CAS  Google Scholar 

  43. H.N. Miankushki, A. Sedghi, S. Baghshahi, A comparison of the electrochemical properties of graphene/Mn3O4 composites fabricated by two different methods. Int. J. Electrochem. Sci. 13, 2462–2473 (2018)

    Article  CAS  Google Scholar 

  44. S. Maharubin, X. Zhang, F. Zhu, H.C. Zhang, G. Zhang, Y. Zhang, Synthesis and applications of semiconducting graphene. J. Nanomater. (2016). https://doi.org/10.1155/2016/6375962

    Article  Google Scholar 

  45. J.W. Lee, A.S. Hall, J.D. Kim, T.E. Mallouk, A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24(6), 1158–1164 (2012). https://doi.org/10.1021/cm203697w

    Article  CAS  Google Scholar 

  46. G.S. Gund, D.P. Dubal, B.H. Patil, S.S. Shinde, C.D. Lokhande, Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochim. Acta 92, 205–215 (2013). https://doi.org/10.1016/j.electacta.2012.12.120

    Article  CAS  Google Scholar 

  47. L. Wang, Y. Li, Z. Han, L. Chen, B. Qian, X. Jiang, G. Yang, Composite structure and properties of Mn3O4/graphene oxide and Mn3O4/graphene. J. Mater. Chem. A 1(29), 8385–8397 (2013). https://doi.org/10.1039/C3TA10237H

    Article  CAS  Google Scholar 

  48. C. Chen, H. Jian, K. Mai, Z. Ren, J. Wang, X. Fu, Z. Wang, Shape-and size-controlled synthesis of Mn3O4 nanocrystals at room temperature. Eur. J. Inorg. Chem. 2014(19), 3023–3029 (2014). https://doi.org/10.1002/ejic.201400013

    Article  CAS  Google Scholar 

  49. K.K. Kadyrzhanov, D.I. Shlimas, A.L. Kozlovskiy, M.V. Zdorovets, Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications. J. Mater. Sci.: Mater. Electron. 31, 11729–11740 (2020). https://doi.org/10.1007/s10854-020-03724-w

    Article  CAS  Google Scholar 

  50. R.I. Shakirzyanov, A.L. Kozlovskiy, M.V. Zdorovets, A.L. Zheludkevich, D.I. Shlimas, N.V. Abmiotka, A.V. Trukhanov, Impact of thermobaric conditions on phase content, magnetic and electrical properties of the CoFe2O4 ceramics. J. Alloys Compd. 954, 170083 (2023). https://doi.org/10.1016/j.jallcom.2023.170083

    Article  CAS  Google Scholar 

  51. G. Mustafa, G. Mehboob, S.N. Khisro, M. Javed, X. Chen, M.S. Ahmed, G. Mehboob, Facile synthesis and electrochemical studies of Mn2O3/graphene composite as an electrode material for supercapacitor application. Frontiers in chemistry 9, 717074 (2021). https://doi.org/10.3389/fchem.2021.717074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. D. Feng, X. Pan, Q. Xia, J. Qin, Y. Zhang, X. Chen, Metallic MoS2 nanosphere electrode for aqueous symmetric supercapacitors with high energy and power densities. J. Mater. Sci. 55(2), 713–723 (2020). https://doi.org/10.1007/s10853-019-03997-5

    Article  ADS  CAS  Google Scholar 

  53. A. Vázquez-Olmos, R. Redón, G. Rodríguez-Gattorno, M.E. Mata-Zamora, F. Morales-Leal, A.L. Fernández-Osorio, J.M. Saniger, One-step synthesis of Mn3O4 nanoparticles: structural and magnetic study. J. Colloid Interface Sci. 291(1), 175–180 (2005). https://doi.org/10.1016/j.jcis.2005.05.005

    Article  ADS  CAS  PubMed  Google Scholar 

  54. S.V. Trukhanov, M.V. Bushinsky, I.O. Troyanchuk, H. Szymczak, Magnetic ordering in La1–xSrxMnO3–x/2 anion-deficient manganites. J. Exp. Theor. Phys. 99, 756–765 (2004). https://doi.org/10.1134/1.1826167

    Article  ADS  CAS  Google Scholar 

  55. A. Kozlovskiy, K. Egizbek, M.V. Zdorovets, M. Ibragimova, A. Shumskaya, A.A. Rogachev, K. Kadyrzhanov, Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5. Sensors 20(17), 4851 (2020). https://doi.org/10.3390/s20174851

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Y. Kong, R. Jiao, S. Zeng, C. Cui, H. Li, S. Xu, L. Wang, Study on the synthesis of Mn3O4 nanooctahedrons and their performance for lithium ion batteries. Nanomaterials 10(2), 367 (2020). https://doi.org/10.3390/nano10020367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. T. Wang, Q. Le, X. Guo, M. Huang, X. Liu, F. Dong, Y.X. Zhang, Preparation of porous graphene@Mn3O4 and its application in the oxygen reduction reaction and supercapacitor. ACS Sustain. Chem. Eng. 7(1), 831–837 (2018). https://doi.org/10.1021/acssuschemeng.8b04447

    Article  CAS  Google Scholar 

  58. O.S. Yakovenko, L.Y. Matzui, L.L. Vovchenko, A.V. Trukhanov, I.S. Kazakevich, S.V. Trukhanov, U. Ritter, Magnetic anisotropy of the graphite nanoplatelet–epoxy and MWCNT–epoxy composites with aligned barium ferrite filler. J. Mater. Sci. 52, 5345–5358 (2017). https://doi.org/10.1007/s10853-017-0776-4

    Article  ADS  CAS  Google Scholar 

  59. M.C. Nwankwo, B. Ezealigo, A.C. Nwanya, A.C. Nkele, A. Agbogu, U. Chime, F.I. Ezema, Syntheses and characterizations of GO/Mn3O4 nanocomposite film electrode materials for supercapacitor applications. Inorg. Chem. Commun. 119, 107983 (2020)

  60. H. Wang, L. Pilon, Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances. Electrochim. Acta. 64, 130–139 (2012). https://doi.org/10.1016/j.electacta.2011.12.118

    Article  CAS  Google Scholar 

  61. S. Li, A. Thomas, Emerged carbon nanomaterials from metal-organic precursors for electrochemical catalysis in energy conversion, in Advanced nanomaterials for electrochemical-based energy conversion and storage. (Elsevier, Amsterdam, 2020), pp.393–423. https://doi.org/10.1016/B978-0-12-814558-6.00012-5

    Chapter  Google Scholar 

  62. P.S. Nnamchi, C.S. Obayi, Electrochemical characterization of nanomaterials, in Characterization of nanomaterials. (Woodhead Publishing, Sawston, 2018), pp.103–127. https://doi.org/10.1016/B978-0-08-101973-3.00004-3

    Chapter  Google Scholar 

  63. J. Zhang, J. Wu, H. Zhang, PEM fuel cell Testing and Diagnosis (Newnes.Books.google.com, 2013)

  64. J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, Z.X. Shen, Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5(1), 1700322 (2018). https://doi.org/10.1002/advs.201700322

    Article  CAS  Google Scholar 

  65. M.I.T.I.V. Student, Transport Phenomena Lecture 37: Pseudocapacitors and batteries. http://ocw.mit.edu/terms

  66. W. Zeng, Y. Huang, Y. Xiong, N. Wang, C. Xu, L. Huang, Gas bubble templated synthesis of Mn3O4-embedded hollow carbon nanospheres in ethanol flame for elastic supercapacitor. J. Alloys Compd. 731, 210–221 (2018). https://doi.org/10.1016/j.jallcom.2017.10.006

    Article  CAS  Google Scholar 

  67. Y. Hu, Y. Wu, J. Wang, Manganese-oxide‐based electrode materials for energy storage applications: how close are we to the theoretical capacitance? Adv. Mater. 30(47), 1802569 (2018). https://doi.org/10.1002/adma.201802569

    Article  CAS  Google Scholar 

  68. G. Jin, X. Xiao, S. Li, K. Zhao, Y. Wu, D. Sun, F. Wang, Strongly coupled graphene/Mn3O4 composite with enhanced electrochemical performance for supercapacitor electrode. Electrochim. Acta 178, 689–698 (2015). https://doi.org/10.1016/j.electacta.2015.08.032

    Article  CAS  Google Scholar 

  69. L. Zhu, S. Zhang, Y. Cui, H. Song, X. Chen, One step synthesis and capacitive performance of graphene nanosheets/Mn3O4 composite. Electrochim. Acta 89, 18–23 (2013). https://doi.org/10.1016/j.electacta.2012.10.157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the South China Normal University for Electrochemical Analysis and National Centre for Physics Islamabad for X-ray analysis of prepared sample. This work was supported by Department of Physics university of Kotli Azad Jammu and Kashmir. We also thank the funding from the National Natural Science Foundation of China (62071459), National Key Research and Development Program of China (2022YFF1202500, 2022YFF1202502), International Science and Technology Cooperation of Guangdong Province (2022A0505050058), Foundation of Shenzhen (KQTD20210811090217009, JCYJ20220818101205011).

Author information

Authors and Affiliations

Authors

Contributions

SNK design the experiment. Ghulam Mustafa conducted the experiments and wrote the manuscript. Yanlong Tai and Gohar Mehboob helps writing, proof reading of the manuscript. Remaining authors contributed in different characterisation etc.

Corresponding authors

Correspondence to Said Nasir Khisro or Yanlong Tai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, G., Qi, K., Khademi, S. et al. Electrochemical performance of Mn3O4/graphene composite deposited on nickel foam as promising electrode material for supercapacitor application. J Mater Sci: Mater Electron 35, 383 (2024). https://doi.org/10.1007/s10854-024-12081-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12081-x

Navigation