Skip to main content
Log in

Structural optical and magnetic characterizations of pure and cobalt-doped CdSe nanoparticles to investigate photocatalytic degradation of methyl blue under visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The samples of cadmium selenide (CdSe) nanoparticles (NPs) of pure and doped with cobalt (Co) were developed in a chemical reduction route. The synthesized nanoparticles were characterized employing transmission electron microscopy (TEM), selected area electron diffraction pattern (SAED), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), energy dispersive x-ray analysis (EDX), x-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, vibrating sample magnetometer (VSM) tool, UV–Vis spectroscopy, photoluminescence (PL) spectroscopy and photocatalytic activity measurements. The average crystallite size is 5.8–8 nm as determined by TEM and XRD measurements. With increased cobalt percentage in CdSe as a doping element, strong photoluminescence quenching and improved quantum confinement are observed. The direct bandgap of CdSe nanoparticle samples of pure and doped with Co (5% & 7%), measured by UV–vis spectrometer are 2.02 eV, 2.13 eV and 2.23 eV, respectively. Photocatalytic activities of CdSe were studied by irradiating the solution of methyl blue (MB) upon its exposure to visible light. The pure CdSe, 5% Co-doped CdSe and 7% Co-doped CdSe show removal efficiency for Methyl Blue solution at pH 7 as 75%, 85% and 97% in 60 min, respectively. In particular, the 7% Co-doped CdSe photocatalyst exhibits about 97% degradation of MB dye at a rate constant (0.0076 min−1) which is clearly more efficient than 5% Co-doped CdSe (0.0067 min−1) and pure CdSe (0.0037 min−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. U. Soni, P. Tripathy, S. Sapra, Photocatalysis from fluorescence-quenched CdSe/Au nano heterostructures: a size-dependent study. J. Phys. Chem. Lett. 5(11), 1909–1916 (2014). https://doi.org/10.1021/jz5006863

    Article  CAS  PubMed  Google Scholar 

  2. I. Concina, M.M. Natile, E. Tondello, G. Sberveglieri, Growth kinetics of CdSe quantum dots generated in polar polymers. Dalton Trans. 41(47), 14354–14359 (2012). https://doi.org/10.1039/C2DT31364B

    Article  CAS  PubMed  Google Scholar 

  3. Z.D. Meng, L. Zhu, S. Ye, Q. Sun, K. Ullah, K.Y. Cho, W.C. Oh, Fullerene modification CdSe/TiO 2 and modification of photocatalytic activity under visible light. Nanoscale Res. Lett. 8, 1–10 (2013). https://doi.org/10.1186/1556-276X-8-189

    Article  CAS  Google Scholar 

  4. D.D. Mishra, G. Tan, Visible photocatalytic degradation of methylene blue on magnetic SrFe12O19. J. Phys. Chem. Solids 123, 157–161 (2018). https://doi.org/10.1016/j.jpcs.2018.07.018

    Article  ADS  CAS  Google Scholar 

  5. A. Manna, R. Bhattacharya, T.K. Das, S. Saha, Effect of reducing agent in the formation of CdSe nanoparticles by chemical reduction route. Physica B 406(4), 981–984 (2011). https://doi.org/10.1016/j.physb.2010.12.042

    Article  ADS  CAS  Google Scholar 

  6. J.T. Adeleke, T. Theivasanthi, M. Thiruppathi, M. Swaminathan, T. Akomolafe, A.B. Alabi, Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles. Appl. Surf. Sci. 455, 195–200 (2018). https://doi.org/10.1016/j.apsusc.2018.05.184

    Article  ADS  CAS  Google Scholar 

  7. A. Joseph, K. Vellayan, B. González, M.A. Vicente, A. Gil, Effective degradation of methylene blue in aqueous solution using Pd-supported Cu-doped Ti-pillared montmorillonite catalyst. Appl. Clay Sci. 168, 7–10 (2019). https://doi.org/10.1016/j.clay.2018.10.009

    Article  CAS  Google Scholar 

  8. M. Khaksar, M. Amini, D.M. Boghaei, K.H. Chae, S. Gautam, Mn-doped ZrO2 nanoparticles as an efficient catalyst for green oxidative degradation of methylene blue. Catal. Commun. 72, 1–5 (2015). https://doi.org/10.1016/j.catcom.2015.08.023

    Article  CAS  Google Scholar 

  9. L. Kong, Z. Diao, X. Chang, Y. Xiong, D. Chen, Synthesis of recoverable and reusable granular MgO-SCCA-Zn hybrid ozonation catalyst for degradation of methylene blue. J. Environ. Chem. Eng. 4(4), 4385–4391 (2016). https://doi.org/10.1016/j.jece.2016.10.002

    Article  CAS  Google Scholar 

  10. M. Abbas, B.P. Rao, V. Reddy, C.G. Kim, Fe3O4/TiO2 core/shell nanocubes: Single-batch surfactantless synthesis, characterization and efficient catalysts for methylene blue degradation. Ceram. Int. 40(7), 11177–11186 (2014). https://doi.org/10.1016/j.ceramint.2014.03.148

    Article  CAS  Google Scholar 

  11. R.S. Ganesh, E. Durgadevi, M. Navaneethan, S.K. Sharma, H.S. Binitha, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, Visible light induced photocatalytic degradation of methylene blue and rhodamine B from the catalyst of CdS nanowire. Chem. Phys. Lett. 684, 126–134 (2017). https://doi.org/10.1016/j.cplett.2017.06.021

    Article  ADS  CAS  Google Scholar 

  12. G. Liao, Q. Li, W. Zhao, Q. Pang, H. Gao, Z. Xu, In-situ construction of novel silver nanoparticle decorated polymeric spheres as highly active and stable catalysts for reduction of methylene blue dye. Appl. Catal. A 549, 102–111 (2018). https://doi.org/10.1016/j.apcata.2017.09.034

    Article  CAS  Google Scholar 

  13. S. Veziroglu, M. Kuru, M.Z. Ghori, F.K. Dokan, A.M. Hinz, T. Strunskus, F. Faupel, O.C. Aktas, Ultra-fast degradation of methylene blue by Au/ZnO-CeO2 nano-hybrid catalyst. Mater. Lett. 209, 486–491 (2017). https://doi.org/10.1016/j.matlet.2017.08.069

    Article  CAS  Google Scholar 

  14. M.M. Hassan, C.M. Carr, A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 209, 201–219 (2018). https://doi.org/10.1016/j.chemosphere.2018.06.043

    Article  ADS  CAS  PubMed  Google Scholar 

  15. S. Jafarinejad, Activated sludge combined with powdered activated carbon (PACT process) for the petroleum industry wastewater treatment: a review. Chem. Int. 3(4), 368 (2017)

    Google Scholar 

  16. F. Minas, B.S. Chandravanshi, S. Leta, Chemical precipitation method for chromium removal and its recovery from tannery wastewater in Ethiopia. Chem. Int. 3(4), 291–305 (2017)

    CAS  Google Scholar 

  17. K.B. Daij, S. Bellebia, Z. Bengharez, Comparative experimental study on the COD removal in aqueous solution of pesticides by the electrocoagulation process using monopolar iron electrodes. Chem. Int. 3(4), 420–427 (2017)

    Google Scholar 

  18. K. Djehaf, A.Z. Bouyakoub, R. Ouhib, H. Benmansour, A. Bentouaf, A. Mahdad, N. Moulay, D. Bensaid, M. Ameri, Textile wastewater in Tlemcen (Western Algeria): Impact, treatment by combined process. Chem. Int. 3(4), 414–419 (2017)

    Google Scholar 

  19. P. Wang, D.Z. Li, J. Chen, X.Y. Zhang, J.J. Xian, X. Yang, X.Z. Zheng, X.F. Li, Y. Shao, A novel and green method to synthesize CdSe quantum dots-modified TiO2 and its enhanced visible light photocatalytic activity. Appl. Catal. B 160, 217–226 (2014). https://doi.org/10.1016/j.apcatb.2014.05.032

    Article  CAS  Google Scholar 

  20. E.Y. Tsui, K.H. Hartstein, D.R. Gamelin, Selenium redox reactivity on colloidal CdSe quantum dot surfaces. J. Am. Chem. Soc. 138, 11105–11108 (2016). https://doi.org/10.1021/jacs.6b06548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. T. Ghosh, J.H. Lee, Z.D. Meng, K. Ullah, C.Y. Park, V. Nikam, W.C. Oh, Graphene oxide based CdSe photocatalysts: synthesis, characterization and comparative photocatalytic efficiency of rhodamine B and industrial dye. Mater. Res. Bull. 48(3), 1268–1274 (2013). https://doi.org/10.1016/j.materresbull.2012.12.023

    Article  CAS  Google Scholar 

  22. S. Ivanov, A. Barylyak, K. Besaha, A. Bund, Y. Bobitski, R. Wojnarowska-Nowak, I. Yaremchuk, M. Kus-Liśkiewicz, Synthesis, characterization, and photocatalytic properties of sulfur-and carbon-codoped TiO2 nanoparticles. Nanoscale Res. Lett. 11, 1–12 (2016). https://doi.org/10.1186/s11671-016-1353-5

    Article  CAS  Google Scholar 

  23. J. Singh, N.K. Verma, Structural, optical and magnetic properties of cobalt-doped CdSe nanoparticles. Bull. Mater. Sci. 37, 541–547 (2014). https://doi.org/10.1007/s12034-014-0671-4

    Article  CAS  Google Scholar 

  24. G. Ramalingam, C.M. Magdalane, B.A. Kumar, R. Yuvakkumar, G. Ravi, A.I. Jothi, N.K. Rotte, G. Murugadoss, A. Ananth, Enhanced visible light-driven photocatalytic performance of CdSe nanorods. Environ. Res. 203, 111–855 (2022). https://doi.org/10.1016/j.envres.2021.111855

    Article  CAS  Google Scholar 

  25. X. Yang, W. Zhang, Z. Zhao, N. Li, Z. Mou, D. Sun, Y. Cai, W. Wang, Y. Lin, Y., Quercertin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J. Inorg. Biochem. 167, 36–48 (2017). https://doi.org/10.1016/j.jinorgbio.2016.11.023

    Article  CAS  PubMed  Google Scholar 

  26. K. Ullah, Y.-H. Kim, B.-E. Lee, S.-B. Jo, L. Zhu, S. Ye, Visible light induced catalytic properties of CdSe-graphene nanocomposites and study its bactericidal effect. Chin. Chem. Lett. 25, 941–946 (2014). https://doi.org/10.1016/j.cclet.2014.03.050

    Article  CAS  Google Scholar 

  27. Y. Lin, S.H. Wu, X. Li, X. Wu, C.P. Yang, G.M. Zeng, Y.R. Peng, Q. Zhou, L. Lu, Microstructure and performance of Z-scheme photocatalyst of silverphosphate modified by MWCNTs and Cr-doped SrTiO3for malachite green degradation. Appl. Catal. B 227, 557–570 (2018). https://doi.org/10.1016/j.apcatb.2018.01.054

    Article  CAS  Google Scholar 

  28. Y. Yang, L.C. Kao, Y.Y. Liu, K. Sun, H.T. Yu, J.H. Guo, S.Y.H. Liou, M.R. Hoffmann, Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment. ACS Catal. 8, 4278–4287 (2018). https://doi.org/10.1021/acscatal.7b04340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. G. Panthi, O.H. Kwon, Y.-S. Kuk, K.R. Gyawali, Y.W. Park, M. Park, Ternary composite of Co-doped CdSe@ electrospun carbon nanofibers: a novel reusable visible light-driven photocatalyst with enhanced performance. Catalys. 10(3), 348 (2020). https://doi.org/10.3390/catal10030348

    Article  CAS  Google Scholar 

  30. K. Mubeen, K. Safeen, A. Irshad, A. Safeen, T. Ghani, W.H. Shah, R. Khan, K.S. Ahmad, R. Casin, M.A. Rashwan, H.O. Elansary, ZnO/CuSe composite-mediated bandgap modulation for enhanced photocatalytic performance against methyl blue dye. Sci. Rep. 13(1), 19580 (2023). https://doi.org/10.1038/s41598-023-46780-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. L. Li, J. Xiao, P. Liu, G.W. Yang, Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal. Sci. Rep. 5, 9028 (2015). https://doi.org/10.1038/srep09028

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. X. He, W. Jianjun, S. Zhan, T. Aidong, Y. Huaming Yang, Y2O3 functionalized natural palygorskite as an adsorbent for methyl blue removal. RSC Adv. 6(48), 41765–41771 (2016). https://doi.org/10.1039/C6RA04350J

    Article  ADS  CAS  Google Scholar 

  33. T.N. Ghosh, S.S. Pradhan, M. Ray, B. Mondal, S. Jana, P. Paul, S.K. Sarkar, S.C. Saha, Utilizing reduced graphene oxide-iron nanoparticles composite to enhance and accelerate the removal of methyl blue organic dye in wastewater. Indian. J. Pure & Appl. Phys. (IJPAP). 60(11), 914–921 (2022). https://doi.org/10.56042/ijpap.v60i11.65360

    Article  Google Scholar 

  34. A. Tadesse, D. RamaDevi, M. Hagos, G. Battu, K. Basavaiah, Synthesis of nitrogen doped carbon quantum dots/magnetite nanocomposites for efficient removal of methyl blue dye pollutant from contaminated water. RSC Adv. 8, 8528–8536 (2018). https://doi.org/10.1039/C8RA00158H

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Q. Sun, K. Wu, J. Zhang, J. Sheng, Construction of ZnFe 2O4/rGO composites as selective magnetically recyclable photocatalysts under visible light irradiation. Nanotechnology 30, 315706 (2019). https://doi.org/10.1088/1361-6528/ab116a

    Article  ADS  CAS  PubMed  Google Scholar 

  36. S.S. Pradhan, K. Konwar, T.N. Ghosh, B. Mondal, S.K. Sarkar, P. Deb, Multifunctional Iron oxide embedded reduced graphene oxide as a versatile adsorbent candidate for effectual arsenic and dye removal. Colloid and Interface Sci. Commun. 39, 100319 (2020). https://doi.org/10.1016/j.colcom.2020.100319

    Article  CAS  Google Scholar 

  37. S.M. Pawar, A.V. Moholkar, C.H. Bhosale, Influence of pH on electrochemically deposited CdSe thin films. Mater. Lett. 61, 103 (2007). https://doi.org/10.1016/j.matlet.2006.06.044

    Article  CAS  Google Scholar 

  38. T. Das, R. Nag, N.K. Rana, M. Nayak, R. Paramanik, A. Bera, S.K. Saha, A. Guchhait, Effect of transition metal doping in the ZnO nanorod on the efficiency of the electron transport layer in semitransparent cspbbr 3 perovskite solar cells. Energy Fuels 37(14), 10642–10651 (2023). https://doi.org/10.1021/acs.energyfuels.3c01911

    Article  CAS  Google Scholar 

  39. N.M. Julkapli, S. Bagheri, S.B. Abd Hamid, Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci. World J. (2014). https://doi.org/10.1155/2014/692307

    Article  Google Scholar 

  40. M. Jothibas, M. Elayaraja, E. Paulson, S. Srinivasan, B.A. Kumar, Dynamic photocatalytic degradation of organic pollutants employing co-doped ZnS nanoparticles synthesized via solid state reaction method. Surf. Interfaces 33, 102249 (2022). https://doi.org/10.1016/j.surfin.2022.102249

    Article  CAS  Google Scholar 

  41. A.K. Bhunia, T.N. Ghosh, Study of the structural properties and temperature-dependent hopping conductivity mechanism to the analysis of nonlinearity exponent in Nd0. 7− xCexSr0. 3MnO3 manganites. J. Mater. Sci. Mater. Electron. 33(22), 17963–17977 (2022). https://doi.org/10.1007/s10854-022-08658-z

    Article  CAS  Google Scholar 

  42. L.C. Nehru, V. Swaminathan, C. Sanjeeviraja, Photoluminescence studies on nanocrystalline tin oxide powder for optoelectronic devices American. J. Mat. Sci. 2(2), 6–10 (2012). https://doi.org/10.5923/j.materials.20120202.02

    Article  Google Scholar 

  43. Y.P.V. Subbaiah, P. Prathap, K.T.R. Reddy, Structural, electrical and optical properties of ZnS films deposited by close-spaced evaporation. Appl. Surf. Sci. 253(5), 2409–2415 (2006). https://doi.org/10.1016/j.apsusc.2006.04.063

    Article  ADS  CAS  Google Scholar 

  44. D.M.A. Latif, S.S. Chiad, M.S. Erhayief, K.H. Abass, N.F. Habubi, H.A. Hussin, Effects of FeCl3 additives on optical parameters of PVA. J. Phys: Conference. Ser. 1003(1), 012108 (2018). https://doi.org/10.1088/1742-6596/1003/1/012108

    Article  CAS  Google Scholar 

  45. O. Madelung, W. von der Osten, U. R˝ossler, (eds.), Semiconductors, Landolt-B¨ornstein, New Series, Group III, Vol. 22, Pt. a (Springer, Berlin, 1982).

  46. S.A. Cherevkov, A.V. Fedorov, M.V. Artemyev, A.V. Prudnikau, A.V. Baranov, Anisotropy of electron-phonon interaction in nanoscale CdSe platelets as seen via off-resonant and resonant raman spectroscopy. Phys. Rev. B 88(4), 041303 (2013). https://doi.org/10.1103/PhysRevB.88.041303

    Article  ADS  CAS  Google Scholar 

  47. K.S. Hemalatha, K. Rukmani, Synthesis, characterization and optical properties of polyvinyl alcohol–cerium oxide nanocomposite films. RSC Adv. 6(78), 74354–74366 (2016). https://doi.org/10.1039/C6RA11126B

    Article  ADS  CAS  Google Scholar 

  48. T.N. Ghosh, A.K. Bhunia, S.S. Pradhan, S.K. Sarkar, Electric modulus approach to the analysis of electric relaxation and magnetodielectric effect in reduced graphene oxide–poly(-vinyl alcohol) nanocomposite. J. Mater. Sci. Mater. Electron. 31, 15919–15930 (2020). https://doi.org/10.1007/s10854-020-04153-5

    Article  CAS  Google Scholar 

  49. S. Rakshit, K.G. Mondal, P.C. Jana, T. Kamilya, S. Saha, Structural and optical properties of chemically synthesized copper oxide nanoparticles and their photocatalytic application. J. Mater. Sci. Mater. Electron. 34, 2141 (2023). https://doi.org/10.1007/s10854-023-11593-2

    Article  CAS  Google Scholar 

  50. A.K. Bhunia, S. Saha, Characterization of budding twigs of flower-type zinc oxide nanocrystals for the fabrication and study of nano-ZnO/p-Si heterojunction UV light photodiode. J. Mater. Sci. Mater. Electron. 32, 9912–9928 (2021). https://doi.org/10.1007/s10854-021-05649-4

    Article  CAS  Google Scholar 

  51. T.N. Ghosh, S.S. Pradhan, S.K. Sarkar, A.K. Bhunia, On the incorporation of the various reduced graphene oxide into poly (vinyl alcohol) nano-compositions: comparative study of the optical, structural properties and magnetodielectric effect. J. Mater. Sci. Mater. Electron. 32, 19157–19178 (2021). https://doi.org/10.1007/s10854-021-06435-y

    Article  CAS  Google Scholar 

  52. A.K. Bhunia, T.N. Ghosh, K. Bhunia, S. Saha, Nonlinear alternating current conduction study in manganese-doped zinc oxide nanocapsules and nanoplates. Appl. Phys. A 129, 81 (2023). https://doi.org/10.1007/s00339-022-06373-4

    Article  ADS  CAS  Google Scholar 

  53. A.I. Ekimov, F. Hache, M.C. Schanne-Klein, D. Ricard, C. Flytzanis, I.A. Kudryavtsev, T.V. Yazeva, A.V. Rodina, L. AlEfros., Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. JOSA B. 10(1), 100–107 (1993). https://doi.org/10.1364/JOSAB.10.000100

    Article  ADS  CAS  Google Scholar 

  54. S. Prasher, M. Kumar, S. Singh, Electrical and optical properties of O6+ Ion Beam-Irradiated polymers. Int. J. Polym. Anal. Charact. 19(3), 204–211 (2014). https://doi.org/10.1080/1023666X.2014.879418

    Article  CAS  Google Scholar 

  55. G. Attia, M.F.H. Abd El-kader, Structural, optical and thermal characterization of PVA/2HEC polyblend films. Int. J. Electrochem. Sci. 8, 5672–5687 (2013). https://doi.org/10.1016/S1452-3981(23)14714-6

    Article  CAS  Google Scholar 

  56. S.B. Aziz, Modifying poly(Vinyl Alcohol) (PVA) from insulator to small-bandgap polymer: A novel approach for organic solar cells and optoelectronic devices. J. Electron. Mater. 45, 736–745 (2016). https://doi.org/10.1007/s11664-015-4191-9

    Article  ADS  CAS  Google Scholar 

  57. L. Bi, A.R. Taussig, H. Kim, L. Wang, G.F. Dionne, D. Bono, K. Persson, G. Ceder, C.A. Ross, Structural, magnetic, and optical properties of BiFeO3 and Bi2FeMnO6 epitaxial thin films: an experimental and first-principles study. Phys. Rev. BB 78, 104106 (2008). https://doi.org/10.1103/PhysRevB.78.104106

    Article  ADS  CAS  Google Scholar 

  58. R.I. Jasim, E.H. Hadi, S.S. Chiad, N.F. Habubi, M. Jadan, J.S. Addasi, Effect of silver-doping on the structural, topography and optical CdSe thin films. J. Ovonic. Res. 19(2), 187–196 (2023). https://doi.org/10.15251/JOR.2023.192.187

    Article  CAS  Google Scholar 

  59. K. Safeen, R. Ullah, A. Safeen, M. Kabeer, R. Khan, H. Ullah, A. Zaman et al., Structure phase-dependent dielectric and photodegradation properties of Co-doped TiO2 nanoparticles synthesized via co-precipitation route. J. Saudi Chem. Soc. 27, 101711 (2023). https://doi.org/10.1016/j.jscs.2023.101711

    Article  CAS  Google Scholar 

  60. M. Saqib, N. Rahman, K. Safeen, S.D. Mekkey, M.A. Salem, A. Safeen, M. Husain et al., Structure phase-induced photodegradation properties of cobalt-sulfur co-doped TiO2 nanoparticles synthesized by hydrothermal route. J. Mater. Res. Technol. 26, 8048 (2023). https://doi.org/10.1016/j.jmrt.2023.09.151

    Article  CAS  Google Scholar 

  61. A.C. Berends, F.T. Rabouw, F.C.M. Spoor, E. Bladt, F.C. Grozema, A.J. Houtepen, L.D.A. Siebbeles, C. de Mello Donegá, Radiative and nonradiative recombination in CuInS2 nanocrystals and CuInS2-based core/shell nanocrystals. J. Phys. Chem. Lett. 7(17), 3503–3509 (2016). https://doi.org/10.1021/acs.jpclett.6b01668

    Article  CAS  PubMed  Google Scholar 

  62. Z.J. Zhang, Avoiding spurious correlation in analysis of chemical kinetic data. Chem. Commun. 47(24), 6861–6863 (2011). https://doi.org/10.1039/C1CC11278C

    Article  CAS  Google Scholar 

  63. B. Garza-Campos, E. Brillas, A. Hernández-Ramírez, A. El-Ghenymy, J.L. Guzmán-Mar, E.J. Ruiz-Ruiz, Salicylic acid degradation by advanced oxidation processes. Coupling of solar photoelectro-Fenton and solar heterogeneous photocatalysis. J. Hazard. Mater. 319, 34–42 (2016). https://doi.org/10.1016/j.jhazmat.2016.02.050

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the IIT Kharagpur Central Research Facilities laboratory and UGC & DST for the SAP & FIST programme in the department of Physics, Vidyasagar University. The authors also acknowledge the Department of Electronics Vidyasagar University & the Department of Electronics Midnapore College (Autonomous).

Author information

Authors and Affiliations

Authors

Contributions

AM, SS and TNG assisted with the problem of the research, carried out the measurement, and manuscript writing. SCS & MRB assisted with the measurement, discussed and helped in drafting the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tilak Narayan Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies involving humans and animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, A., Bera, M.R., Ghosh, T.N. et al. Structural optical and magnetic characterizations of pure and cobalt-doped CdSe nanoparticles to investigate photocatalytic degradation of methyl blue under visible light. J Mater Sci: Mater Electron 35, 170 (2024). https://doi.org/10.1007/s10854-024-11955-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11955-4

Navigation