Skip to main content
Log in

Effect of annealing atmosphere on the energy storage performance of antiferroelectric ceramics PLZT

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Antiferroelectric materials, which exhibit high saturation polarization intensity with small residual polarization intensity, are considered as the most promising dielectric energy storage materials. The energy storage properties of ceramics are known to be highly dependent on the annealing atmosphere employed in their preparation. In this study, we investigated the effect of annealing atmosphere on the energy storage properties of lead zirconate titanate (PLZT) ceramics prepared by the sol-gel method. Specifically, the ceramics were annealed in four different atmospheres: nitrogen, oxygen, vacuum and air. Our results showed that the samples annealed in oxygen and air exhibited significantly higher energy storage density and lower dielectric loss compared to those annealed in nitrogen and vacuum. With the objective of modulating the internal defect structure of ceramics by changing the atmosphere during annealing, we annealed the ceramics in \({\text {N}_2}\), \({\text {O}_2}\), and vacuum environments to obtain PLZT ceramics with different oxygen vacancy concentrations. We achieved an energy storage density of 2.32 J/cm\(^{3}\) and an energy storage efficiency of 47.8% under the electric field of 165 kV/cm. Our findings suggest that optimizing the annealing atmosphere can improve the energy storage performance of PLZT ceramics. This study provides valuable insight into the effect of annealing atmosphere on ceramic properties, which can aid in the development of high-performance energy storage materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Collins, G. Gourdin, M. Foster, D. Qu, Carbon surface functionalities and sei formation during li intercalation. Carbon 92, 193–244 (2015)

    Article  CAS  Google Scholar 

  2. Q. Li, K. Han, M.R. Gadinski, G. Zhang, Q. Wang, High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv. Mater. 26(36), 6244–6249 (2014)

    Article  CAS  PubMed  Google Scholar 

  3. B. Li, Q. Liu, X. Tang, T. Zhang, Y. Jiang, W. Li, J. Luo, High energy storage density and impedance response of plzt2/95/5 antiferroelectric ceramics. Materials 10(2), 143 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. X. Zhang, S. Jiao, J. Tu, W.L. Song, X. Xiao, S. Li, M. Wang, H. Lei, D. Tian, H. Chen et al., Rechargeable ultrahigh-capacity tellurium-aluminum batteries. Energy Environ. Sci. 12(6), 1918–1927 (2019)

    Article  CAS  Google Scholar 

  5. D. Wang, D. Zhou, K. Song, A. Feteira, C.A. Randall, I.M. Reaney, Cold-sintered c0g multilayer ceramic capacitors. Adv. Electron. Mater. 5(7), 1900025 (2019)

    Article  Google Scholar 

  6. Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M.T. Lanagan, H. Liu, Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 29(20), 1601727 (2017)

    Article  Google Scholar 

  7. F. Li, J. Zhai, B. Shen, H. Zeng, Recent progress of ecofriendly perovskite-type dielectric ceramics for energy storage applications. J. Adv. Dielectr. 8(06), 1830005 (2018)

    Article  CAS  Google Scholar 

  8. R. Xu, Y. Feng, X. Wei, Z. Xu, Analysis on nonlinearity of antiferroelectric multilayer ceramic capacitor (MLCC) for energy storage. IEEE Trans. Dielectr. Electr. Insul. 26(6), 2005–2011 (2019)

    Article  CAS  Google Scholar 

  9. L. Zhang, Y. Pu, M. Chen, Complex impedance spectroscopy for capacitive energy-storage ceramics: a review and prospects. Mater. Today Chem. 28, 101353 (2023)

    Article  CAS  Google Scholar 

  10. L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.F. Li, S. Zhang, Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019)

    Article  CAS  Google Scholar 

  11. P. Qiao, Y. Zhang, X. Chen, M. Zhou, S. Yan, X. Dong, G. Wang, Enhanced energy storage properties and stability in (Pb0. 895La0. 07)(ZrxTi1-x) O3 antiferroelectric ceramics. Ceram. Int. 45(13), 15898–15905 (2019)

  12. B. Xie, T. Wang, J. Cai, Q. Zheng, Z. Liu, K. Guo, P. Mao, H. Zhang, S. Jiang, High energy density of ferroelectric polymer nanocomposites utilizing pzt@ SiO2 nanocubes with morphotropic phase boundary. Chem. Eng. J. 434, 134659 (2022)

    Article  CAS  Google Scholar 

  13. C. Zhu, D. Guo, D. Ye, S. Jiang, Y. Huang, Flexible PZT-integrated, bilateral sensors via transfer-free laser lift-off for multimodal measurements. ACS Appl. Mater. Interfaces 12(33), 37354–37362 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. W. Cao, P. Chen, R. Lin, F. Li, B. Ge, D. Song, Z. Cheng, C. Wang, Boosting energy-storage performance in lead-free ceramics via polyphase engineering in the superparaelectric state. Compos. Part B: Eng. 255, 110630 (2023)

    Article  CAS  Google Scholar 

  15. H.R. Jo, C.S. Lynch, A high energy density relaxor antiferroelectric pulsed capacitor dielectric. J. Appl. Phys. 119(2), 024104 (2016)

    Article  ADS  Google Scholar 

  16. P. Qiao, Y. Zhang, X. Chen, M. Zhou, G. Wang, X. Dong, Effect of Mn-doping on dielectric and energy storage properties of (pb0. 91la0. 06)(zr0. 96ti0. 04) o3 antiferroelectric ceramics. J. Alloys Compd. 780, 581–587 (2019)

    Article  CAS  Google Scholar 

  17. Z. Cai, X. Wang, L. Li, Phase-field modeling of electromechanical breakdown in multilayer ceramic capacitors. Adv. Theory Simul. 2(4), 1800179 (2019)

    Article  CAS  Google Scholar 

  18. M.H. Park, D.H. Lee, K. Yang, J.Y. Park, G.T. Yu, H.W. Park, M. Materano, T. Mittmann, P.D. Lomenzo, T. Mikolajick et al., Review of defect chemistry in fluorite-structure ferroelectrics for future electronic devices. J. Mater. Chem. C 8(31), 10526–10550 (2020)

    Article  CAS  Google Scholar 

  19. Z. Song, H. Liu, M.T. Lanagan, S. Zhang, H. Hao, M. Cao, Z. Yao, Z. Fu, K. Huang, Thermal annealing effects on the energy storage properties of BST ceramics. J. Am. Ceram. Soc. 100(8), 3550–3557 (2017)

    Article  CAS  Google Scholar 

  20. S.R. Reddy, V.V.B. Prasad, S. Bysakh, V. Shanker, N. Hebalkar, S.K. Roy, Superior energy storage performance and fatigue resistance in ferroelectric BCZT thin films grown in an oxygen-rich atmosphere. J. Mater. Chem. C 7(23), 7073–7082 (2019)

    Article  CAS  Google Scholar 

  21. L.M. Wang, Relationship between intrinsic breakdown field and bandgap of materials. In: 2006 25th International Conference on Microelectronics. pp. 576–579. IEEE (2006)

  22. H. Wu, F. Zhuo, H. Qiao, L. Kodumudi Venkataraman, M. Zheng, S. Wang, H. Huang, B. Li, X. Mao, Q. Zhang, Polymer-/ceramic-based dielectric composites for energy storage and conversion. Energy Environ. Mater. 5(2), 486–514 (2022)

    Article  CAS  Google Scholar 

  23. Z.H. Niu, Y.P. Jiang, X.G. Tang, Q.X. Liu, W.H. Li, B-site non-stoichiometric (Pb0. 97La0. 02)(Zr0. 95Ti0. 05) O3 antiferroelectric ceramics for energy storage. J. Asian Ceram. Soc. 6(3), 240–246 (2018)

    Article  Google Scholar 

  24. F. Yan, G. Ge, J. Qian, J. Lin, C. Chen, Z. Liu, J. Zhai, Gradient-structured ceramics with high energy storage performance and excellent stability. Small 19(6), 2206125 (2023)

    Article  CAS  Google Scholar 

  25. J.H. Zhang, Y. Zhang, N. Sun, Y. Li, J. Du, L. Zhu, X. Hao, Enhancing output performance of triboelectric nanogenerator via large polarization difference effect. Nano Energy 84, 105892 (2021)

    Article  CAS  Google Scholar 

  26. Q. Liao, Y. Bao, S. Yan, X. Chen, Y. Lin, X. Dong, G. Wang, Tunable equivalent dielectric constant and superior energy storage stability in relaxor-like antiferroelectric PLZT ceramic. J. Eur. Ceram. Soc. 42(9), 3877–3885 (2022)

    Article  CAS  Google Scholar 

  27. C. Pavithra, W. Madhuri, Electrical and magnetic properties of lead nickel titanate synthesized by sol-gel method and microwave processing. J. Non-Cryst. Solids 500, 49–60 (2018)

    Article  ADS  CAS  Google Scholar 

  28. R. Zhu, K. Zhu, J. Qiu, L. Bai, H. Ji, Coprecipitation-assisted hydrothermal synthesis of PLZT hollow nanospheres. Mater. Res. Bull. 45(8), 969–973 (2010)

    Article  CAS  Google Scholar 

  29. N. Kumari, S. Monga, M. Arif, N. Sharma, A. Singh, V. Gupta, P.M. Vilarinho, K. Sreenivas, R. Katiyar, Higher permittivity of Ni-doped lead zirconate titanate, Pb [(Zr0. 52Ti0. 48)(1-x) Nix] O3, ceramics. Ceram. Int. 45(4), 4398–4407 (2019)

    Article  CAS  Google Scholar 

  30. B. Liu, X. Wang, R. Zhang, L. Li, Grain size effect and microstructure influence on the energy storage properties of fine-grained batio3-based ceramics. J. Am. Ceram. Soc. 100(8), 3599–3607 (2017)

    Article  CAS  Google Scholar 

  31. S. Ray, An Introduction to High Voltage Engineering (PHI Learning Pvt. Ltd., Delhi, 2013)

    Google Scholar 

  32. T. Fan, C. Ji, G. Chen, W. Cai, R. Gao, X. Deng, Z. Wang, C. Fu, Enhanced the dielectric relaxation characteristics of BaTiO3 ceramic doped by BiFeo3 and synthesized by the microwave sintering method. Mater. Chem. Phys. 250, 123034 (2020)

    Article  CAS  Google Scholar 

  33. J. Yang, W. Bai, Y. Zhang, C.G. Duan, J. Chu, X. Tang, Dielectric phenomena of multiferroic oxides at acoustic-and radio-frequency. J. Phys.: Condens. Matter 35(46), 463001 (2023)

  34. H. Liu, L. Wang, F. Zhang, X. Guo, P. Shen, X. Zhao, S. Fan, The effect of the annealing atmosphere on the properties of Sr2Bi4Ti5O18 ferroelectric thin films. Ceram. Int. 45(15), 18320–18326 (2019)

    Article  CAS  Google Scholar 

  35. W. Cai, Q. Zhang, C. Zhou, R. Gao, F. Wang, G. Chen, X. Deng, Z. Wang, N. Deng, L. Cheng et al., Effects of oxygen partial pressure on the electrical properties and phase transitions in (Ba, Ca)(Ti, Zr)O3 ceramics. J. Mater. Sci. 55, 9972–9992 (2020)

    Article  ADS  CAS  Google Scholar 

  36. S. Yang, C. Zuo, F. Du, L. Chen, W. Jie, X. Wei, Submicron Sr0. 7Bi0. 2TiO3 dielectric ceramics for energy storage via a two-step method aided by cold sintering process. Mater. Des. 225, 111447 (2023)

    Article  CAS  Google Scholar 

  37. W. Wang, X.G. Tang, Y.P. Jiang, Q.X. Liu, W.H. Li, X.B. Guo, Z.H. Tang, Modified relaxor ferroelectrics in BiFeO3-(Ba, Sr) TiO3-BiScO3 ceramics for energy storage applications. Sustain. Mater. Technol. 32, e00428 (2022)

    CAS  Google Scholar 

  38. J. Yu, L. Bai, R. Gao, Effect of sintering temperature on magnetoelectric coupling in 0.2 Ni0. 9Zn0. 1Fe2O4-0.8 Ba0. 9Sr0. 1TiO3 composite ceramics. Process. Appl. Ceram. 14(4), 336–345 (2020)

    Article  CAS  Google Scholar 

  39. H. Wu, W. Li, H. Ao, Z. Zeng, X. Qin, S. Xing, C. Zhou, R. Gao, X. Deng, W. Cai et al., Effect of holding time on microstructure, ferroelectric and energy-storage properties of Pb0. 925La0. 05Zr0. 95Ti0. 05O3@ SiO2 ceramics. J. Alloys Compd. 896, 162932 (2022)

    Article  CAS  Google Scholar 

  40. L. Bai, R. Gao, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, W. Cai, Influence of molar ratio on dielectric, ferroelectric and magnetic properties of Co0. 5Mg0. 5Fe2O4/Ba0. 85Sr0.15TiO3 composite ceramics. Process. Appl. Ceram. 13(3), 257–268 (2019)

    Article  CAS  Google Scholar 

  41. G. Wang, J. Li, X. Zhang, Z. Fan, F. Yang, A. Feteira, D. Zhou, D.C. Sinclair, T. Ma, X. Tan et al., Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energy Environ. Sci. 12(2), 582–588 (2019)

    Article  CAS  Google Scholar 

  42. R. Xu, S. Zhang, F. Wang, Q. Zhang, Z. Li, Z. Wang, R. Gao, W. Cai, C. Fu, The study of microstructure, dielectric and multiferroic properties of (1- x)Co0.8Cu0.2Fe2O4-xBa0.6Sr0.4TiO3 composites. J. Electron. Mater. 48, 386–400 (2019)

    Article  ADS  CAS  Google Scholar 

  43. G. Chen, X. Peng, C. Fu, W. Cai, R. Gao, P. Fan, X. Yi, H. Yang, C. Ji, H. Yong, Effects of sintering method and BiFeO3 dopant on the dielectric and ferroelectric properties of BaTiO3-BiYbO3 based solid solution ceramics. Ceram. Int. 44(14), 16880–16889 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work has been supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K20220150), the Chongqing Research Program of Basic Research and Frontier Technology (cstc2021jcyj-msxmX0008, cstc2021jcyj-msxmX0039, cstc2021jcyj-msxmX0599), the Natural Science Foundation of Chongqing (cstc2020jcyj-zdxmX0008, cstc2020jcyj-msxmX0030), the special project of Chongqing technology innovation and application development (cstc2020jscx-msxmX0218), the Program for Creative Research Groups in University of Chongqing (Grant No. CXQT19031), the special project for technological innovation and application development of Chongqing Science and technology enterprises (cstc2021kqjscx - phxmX0008), and the Postgraduate Technology Innovation Project of Chongqing University of Science & Technology (YKJCX2220222, YKJCX2220224).

Funding

Funding was provided by Chongqing Research Program of Basic Research and Frontier Technology (Grant No. cstc2019jcyj-msxmX0071).

Author information

Authors and Affiliations

Authors

Contributions

Yulin Zhang: Conceptualization, Methodology, Investigation, Writing - original draft. Siqi Zhong,Guiyun Sun: Validation, Formal analysis, Visualization. Chen Chen, Yiwen Ding: Validation, Formal analysis, Visualization, Writing - review & editing. Rongli Gao: Formal analysis, Writing - review & editing. Wei Cai: Writing - review & editing. Chunlin Fu: Resources, Writing - review & editing, Supervision, Data curation.

Corresponding author

Correspondence to Rongli Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

No human and/or animal studies are involved. Manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhong, S., Sun, G. et al. Effect of annealing atmosphere on the energy storage performance of antiferroelectric ceramics PLZT. J Mater Sci: Mater Electron 35, 181 (2024). https://doi.org/10.1007/s10854-024-11943-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11943-8

Navigation