Skip to main content
Log in

Investigation on structural, morphological, and optical properties of copper molybdate nanorods for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transition metal molybdates are good choice for electrochemical applications because of their desirable chemical and physical characteristics. In this study, copper molybdate (CuMoO4) nanorods were effectively prepared by hydrothermal technique and explored for supercapacitor applications. The influence of hydrothermal reaction times on the structural, morphological, and optical properties of the CuMoO4 nanorods were studied. The anorthic crystal structure of CuMoO4 nanorods along better crystallinity was confirmed by XRD analysis. The FESEM and HRTEM images showed that the synthesized sample exhibited nanorod structure. EDAX analysis showed the presence of elements related to CuMoO4. FTIR spectroscopy proved that the characteristic bonds of Cu–O and Mo–O were observed below 1000 cm−1. BET studies showed a calculated surface area of 45.4 m2/g related to the CuMoO4 nanorods. The oxidation state of Cu was +2 identified by XPS analysis. The optical bandgap values decreased from 2.25 to 2.07 eV with increasing reaction times. Cyclic voltammetry measurement revealed that charge storage in CuMoO4 exhibited pseudocapacitive behavior and nanorod structures achieved an excellent specific capacitance value of 156 Fg−1 at a low scan rate. Based on this study, the obtained CuMoO4 nanorod electrodes could be a promising electrode material for energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. L. Abbasi, M. Arvand, Engineering hierarchical ultrathin CuCo2O4 nanosheets array on Ni foam by rapid electrodeposition method toward high-performance binder free supercapacitors. Appl. Surf. Sci. 445, 272–280 (2018)

    ADS  CAS  Google Scholar 

  2. M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nature Nanotechnol. 10, 313–318 (2015)

    ADS  CAS  Google Scholar 

  3. L.B. Liu, Y. Yu, C. Yan, K. Li, Z.J. Zheng, Wearable energy-dense and power dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat. Commun. 6, 7260 (2015)

    ADS  CAS  PubMed  Google Scholar 

  4. C. Wua, J. Cai, Q. Zhang, X. Zhou, Y. Zhu, L. Li, P. Shen, K. Zhang, Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors. Electrochim. Acta 169, 202–209 (2015)

    Google Scholar 

  5. J. Balamurugan, C. Li, V. Aravindan, N.H. Kim, J.H. Lee, Hierarchical Ni–Mo–S and Ni–Fe–S nanosheets with ultrahigh energy density for flexible all solid-state supercapacitors. Adv. Funct. Mater. 28, 1803287 (2015)

    Google Scholar 

  6. K. Zhang, X. Ye, Y. Shen, Z. Cen, K. Xu, F. Yang, Interface engineering of Co3O4 nanowire arrays with ultrafine NiO nanowires for high-performance rechargeable alkaline battery. Dalton Trans. 49, 8582–8590 (2020)

    CAS  PubMed  Google Scholar 

  7. K.N. Hui, K.S. Hui, Z. Tang, V.V. Jadhav, Q.X. Xia, Hierarchical chestnut-like MnCo2O4 nanoneedles grown on nickel foam as binder-free electrode for highenergy density asymmetric supercapacitors. J. Power. Sources 330, 195–203 (2016)

    ADS  CAS  Google Scholar 

  8. Y. Miao, X. Zhang, J. Zhan, Y. Sui, J. Qi, F. Wei, Q. Meng, Y. He, Y. Ren, Z. Zhan, Z. Sun, Hierarchical NiS@CoS with controllable core-shell structure by two-step strategy for supercapacitor electrodes. Adv. Funct. Mater. 7, 1901618 (2019)

    Google Scholar 

  9. W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumare, A. Mehmood, E.E. Kwon, Recent advancements in supercapacitor technology. Nano Energy 52, 441–473 (2018)

    CAS  Google Scholar 

  10. N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Asymmetric supercapacitor electrodes and devices. Adv. Mater. 29, 1605336 (2017)

    Google Scholar 

  11. S.S. Patil, T.S. Bhat, A.M. Teli, S.A. Beknalkar, S.B. Dhavale, M.M. Faras, M.M. Karanjkar, P.S. Patil, Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: an overview. Eng. Sci. 12, 38–51 (2020)

    CAS  Google Scholar 

  12. J. Balamurugan, T.T. Nguyen, V. Aravindan, N.H. Kim, S.H. Leea, J.H. Lee, All ternary metal selenide nanostructures for high energy flexible charge storage devices. Nano Energy 65, 103999 (2019)

    CAS  Google Scholar 

  13. J. Wei, X. Li, H. Xue, J. Shao, R. Zhu, H. Pang, Hollow structural transition metal oxide for advanced supercapacitors. Adv. Mater. 5, 1701509 (2018)

    Google Scholar 

  14. G. Zhang, X. Xiao, B. Li, P. Gu, H. Xue, H. Pang, Transition metal oxides with one dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J. Mater. Chem. 5, 8155–8186 (2017)

    CAS  Google Scholar 

  15. H. Zhou, M. Ren, H.-J. Zhai, Enhanced supercapacitive behaviors of poly(3,4-ethylenedioxythiophene)/graphene oxide hybrids prepared under optimized electropolymerization conditions. Electrochim. Acta 372, 137861 (2021)

    CAS  Google Scholar 

  16. X. Li, A.M. Elshahawy, C. Guan, J. Wang, Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13, 1701530 (2017)

    Google Scholar 

  17. S. Yadav, A. Sharma, Importance and challenges of hydrothermal technique for synthesis of transition metal oxides and composites as supercapacitor electrode materials. J. Energy Storage 44, 103295 (2021)

    Google Scholar 

  18. L. Shen, L. Yu, H. Bin Wu, X.Y. Yu, X. Zhang, X.W. Lou, Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 6, 1–8 (2015)

    ADS  Google Scholar 

  19. C. Qing, C. Yang, M. Chen, W. Li, S. Wang, Y. Tang, Design of oxygen-deficient NiMoO4 nanoflake and nanorod arrays with enhanced supercapacitive performance. Chem. Eng. J. 354, 182–190 (2018)

    CAS  Google Scholar 

  20. R. Rajakumaran, M. Abinaya, S.M. Chen, K. Blamurugan, V. Muthura, Ultrasonication and hydrothermal assisted synthesis of cloud-like zinc molybdate nanospheres for enhanced detection of flutamide. Ultrason. Sonochem. 61, 104823 (2020)

    CAS  PubMed  Google Scholar 

  21. H. Cao, N. Wu, Y. Liu, S. Wang, W. Du, J. Liu, Facile synthesis of rod-like manganese molybdate crystallines with two-dimensional nanoflakes for supercapacitor application. Electrochim. Acta 225, 605–613 (2017)

    CAS  Google Scholar 

  22. N.U.H.L. Ali, S. Manoharan, P. Pazhamalai, S.J. Kim, CuMoO4 nanostructures: a novel bifunctional material for supercapacitor and sensor applications. J. Energy Storage 52, 104784 (2022)

    Google Scholar 

  23. J. Xu, D. Xue, Y. Zhu, Room temperature synthesis of curved ammonium copper molybdate nanoflake and its hierarchical architecture. J. Phys. Chem. B 110, 17400–17405 (2006)

    CAS  PubMed  Google Scholar 

  24. V. Umapathy, A. Manikandan, S. Arul Antony, P. Ramu, P. Neeraja, Synthesis, structural, morphological and opto-magnetic properties of Bi2MoO6 nano-photocatalyst by sol-gel method. Trans. Nonferr. Met. Soc. China 25, 3271–3278 (2015)

    CAS  Google Scholar 

  25. I. Jonane, A. Anspoks, G. Aquilanti, A. Kuzmin, Hightemperature X-ray absorption spectroscopy study of thermochromic copper molybdate. Acta Mater. 179, 26–35 (2019)

    ADS  CAS  Google Scholar 

  26. L. Zhang, S. Zheng, L. Wang, H. Tang, H. Xue, G. Wang, H. Pang, Fabrication of metal molybdate micro/nanomaterials for electrochemical energy storage. Small 13, 1700917 (2017)

    Google Scholar 

  27. P. Thilagavathi, A. Manikandan, S. Sujatha, S.K. Jaganathan, S. Arul Antony, Sol–gel synthesis and characterization studies of NiMoO4 nanostructures for photocatalytic degradation of methylene blue dye. Nanosci. Nanotech. Lett. 8, 438–443 (2015)

    Google Scholar 

  28. S. Mehta, S. Kumaravel, S. Jha, M. Yen, S. Kundu, H. Liang, Impacts of structure-directing agents on the synthesis of Cu3Mo2O9 for flexible lignin-based supercapacitor electrodes. J. Compos. Sci. 7, 155 (2023)

    CAS  Google Scholar 

  29. K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal, T. Alagesan, Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode. Ceram. Int. 44, 20075–20083 (2018)

    CAS  Google Scholar 

  30. B. Saravanakumar, G. Ravi, R. Yuvakkumar, V. Ganesh, R.K. Guduru, Synthesis of polyoxometalates, copper molybdate (Cu3Mo2O9) nanopowders, for energy storage applications. Mater. Sci. Semicond. Process. 93, 164–172 (2019)

    CAS  Google Scholar 

  31. V. Gajraj, C.R. Mariappan, Electrochemical performances of asymmetric aqueous supercapacitor based on porous Cu3Mo2O9 petals and La2Mo3O12 nanoparticles fabricated through a simple co-precipitation method. Appl. Surf. Sci. 512, 145648 (2020)

    CAS  Google Scholar 

  32. M. Benchikhi, R. El Ouatib, S. Guillemet-Fritsch, J.Y.C. Ching, L. Er-Rakho, B. Durand, Sol-gel synthesis and sintering of submicronic copper molybdate (α-CuMoO4) powders. Ceram. Int. 40, 5371–5377 (2014)

    CAS  Google Scholar 

  33. A.P. De Moura, L.H. de Oliveira, P.F. Pereira, I.L. Rosa, M.S. Li, E. Longo, J.A. Varela, Photoluminescent properties of CMoO4 nanorods quickly synthesized and annealed in a domestic microwave oven. Adv. Chem. Eng. Sci. 2(4), 465–473 (2012)

    Google Scholar 

  34. R. Syah, A. Hussein Altajer, O.F. Abdul-Rasheed, M. Aljeboree, N. AbdAlrazzak, A.F. Alkaim, CuMoO4/ZnO nanocomposites: novel synthesis, characterization, and photocatalytic performance. J. Nanostruct. 11(1), 73–80 (2021)

    CAS  Google Scholar 

  35. P. Santhiyadevi, K. Buvaneswari, Bio-Synthesis and characterization of copper molybdate nanoparticles. J. Nanosci. Tech. 4, 415–417 (2018)

    Google Scholar 

  36. H.J. Kim, D.J. Kim, T. Anitha, A.K. Yedluri, J.S. Bak, I. Cho, M. Jagadeesh, A.E. Reddy, A facile one-step hydrothermal approach for the synthesis of a CuMoO4/MoS2 composite as a high performance pseudocapacitive material for supercapacitor applications. N. J. Chem. 43, 15605–15613 (2019)

    CAS  Google Scholar 

  37. S. Sahoo, K. Krishnamoorthy, P. Pazhamalai, V. Mariappan, S.J. Kim, Copper molybdenum sulfide: a novel pseudocapacitive electrode material for electrochemical energy storage device. Int. J. Hydrogen Energy 43, 12222–12232 (2018)

    CAS  Google Scholar 

  38. H.O. Hassani, M. Akouibaa, S. Abboudi, B.E.I. Bali, M. Lachkar, F. Al Wadaani, A simple and cost-effective new synthesis method of copper molybdate CuMoO4 nanoparticles and their catalytic performance. J. Sci: Adv. Mater. Dev. 6, 501–507 (2021)

    CAS  Google Scholar 

  39. W. Zhang, J. Yin, F. Min, L. Jia, D. Zhang, Q. Zhang, J. Xie, Preparation and photoluminescence properties of MMoO4 (M = Cu, Ni, Zn) nano-particles synthesized via electrolysis. J. Mol. Struct. 1127, 777 (2017)

    ADS  CAS  Google Scholar 

  40. M. Sivakumar, S. Kanagesan, K. Chinnaraj, R. Suresh Babu, S. Nithiyanantham, Synthesis, characterization and effects of citric acid and PVA on magnetic properties of CoFe2O4. J. Inorg. Organomet. Polym. Mater. 23, 439 (2013)

    CAS  Google Scholar 

  41. Z. Shahri, M.S. Niasari, N. Mir, Facile synthesis and characterization of nanostructured flower like copper molybdate by the co-precipitation method. J. Cryst. Growth 386, 80–87 (2014)

    ADS  CAS  Google Scholar 

  42. W. Tan, J. Luan, Investigation into the synthesis conditions of CuMoO4 by an in situ method and its photocatalytic properties under visible light irradiation. RSC Adv. 10, 9745 (2020)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. M. Sadeghi, Investigation of the structural, optical and magnetic propertiesof CuMoO4 nanoparticles synthesized through a sonochemical method. J. Mater. Sci. Mater. Electron. 27, 5796–5801 (2016)

    CAS  Google Scholar 

  44. M. Benchikh, R. El Ouatib, S. Guillemet-Fritsch, L. Rakho, B. Durand, Characterization and photoluminescence properties of ultrafine copper molybdate (α-CuMoO4) powders prepared via a combustion-like process. Int. J. Miner. Metall. Mater. 23, 1340 (2016)

    Google Scholar 

  45. P. More, V. Inamdar, S. Suresh, S. Dindorkar, S. Peddakolmi, K. Jain, N. Khona, S. Khatoon, S. Patange, Synthesis of zinc oxide nanoparticles using Chrysopogonzizanioides grass extract, its applications in photodegradation and antimicrobial activity. J. Mater. Sci. Mater. Electron. 32, 20725–20741 (2021)

    CAS  Google Scholar 

  46. A.A. Yadav, Y.M. Hunge, S.-W. Kang, Chemical synthesis of a microsphere-like copper molybdate electrode for oxygen evolution reaction. Surf. Interfaces 26, 101425 (2021)

    CAS  Google Scholar 

  47. A.B. Appiagyei, J.O. Bonsu, J.I. Han, Robust structural stability and performance-enhanced asymmetric supercapacitors based on CuMoO4/ZnMoO4 nanoflowers prepared via a simple and low energy precipitationroute. J. Mater. Sci.: Mater. Elect. 32, 6668–6681 (2021)

    CAS  Google Scholar 

  48. T. Anitha, A.E. Reddy, Y. Anil Kumar, Y.R. Cho, H.J. Kim, One-step synthesis and electrochemical performance of a PbMoO4/CdMoO4 composite as an electrode material for high-performance supercapacitor applications. Dalt. Trans. 48, 10652 (2019)

    CAS  Google Scholar 

  49. Y. Yao, F. Lu, Y. Zhu, F. Wei, X. Liu, C. Lian, S. Wang, Magnetic core-shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II. J. Hazard. Mater. 297, 224–233 (2015)

    CAS  PubMed  Google Scholar 

  50. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Khalilian Shalamzari, Facile chemical synthesis and structure characterization of copper molybdate nanoparticles. J. Mol. Struct. 1083, 229–235 (2015)

    ADS  CAS  Google Scholar 

  51. H. Huang, J. Lai, Lu. Jian, Z. Li, Preparation of ZnMoO4 for ultraviolet detection by laser ablation in liquid combined with hydrothermal method. Opt. Mater. 141, 113918 (2023)

    CAS  Google Scholar 

  52. L. Kamarasu, E. Sathiyamoorthi, S.S. Nannapaneni, S. Arunachalam, M. Arunpandian, J. Lee, P. Arumugam, N.K. Katari, Enhanced photocatalytic performance of pebble stone like CuMoO4 photocatalyst for the degradation of organic pollutant. Physica B 650, 414544 (2023)

    CAS  Google Scholar 

  53. A.B. Campos, A.Z. Simões, E. Longo, J.A. Varela, V.M. Longo, A.T. de Figuerido, F.S. De Vicente, A.C. Hernandes, Mechanisms behind blue, green, and red photoluminescence emissions in CaWO4 and CaMoO4 powders. Appl. Phys. Lett. 91, 051923 (2017)

    ADS  Google Scholar 

  54. G. Veerasubramani, K. Krishnamoorthy, S. Radhakrishnan, N.J. Kim, S.J. Kim, Synthesis, characterization, and electrochemical properties of CoMoO4 nanostructures. Int. J. Hydrogen Energy 39, 5186–5193 (2014)

    CAS  Google Scholar 

  55. S.P. Keerthana, B. Jansi Rani, R. Yuvakkumar, G. Ravi, E. Yohi Shivatharsiny, S. Babu, H.S. Almoallim, S.A. Alharbi, Copper molybdate nanoparticles for electrochemical water splitting application. Inter. J. Hydrogen Energy 46, 7701–7711 (2021)

    CAS  Google Scholar 

  56. P. Zhang, X. Zhang, G. Li, Fabrication of rod-like NiMoO4/CoMoO4 for application in asymmetric supercapacitors. Ionics 26, 393–401 (2020)

    CAS  Google Scholar 

  57. M. Farahpour, M. Arvand, Single-pot hydrothermal synthesis of copper molybdate nanosheet arrays as electrode materials for high areal-capacitance supercapacitor. J. Energy Storage 40, 102742–102813 (2021)

    Google Scholar 

  58. J. Bisquert, V.S. Vikhrenko, Analysis of the kinetics of ion intercalation. Two state model describing the coupling of solid state ion diffusion and ion binding processes. Electrochim. Acta 47, 3977–3988 (2002)

    CAS  Google Scholar 

Download references

Funding

No funding was received for the research reported in the article.

Author information

Authors and Affiliations

Authors

Contributions

PE contributed to conceptualization and writing and designing of the study; TS contributed to investigation, methodology, and supervision; GS contributed to reviewing and investigation. All authors read and approved the manuscript.

Corresponding author

Correspondence to T. Sumathi.

Ethics declarations

Conflict of interest

The author declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elayarani, P., Sumathi, T. & Sivakumar, G. Investigation on structural, morphological, and optical properties of copper molybdate nanorods for supercapacitor applications. J Mater Sci: Mater Electron 35, 211 (2024). https://doi.org/10.1007/s10854-023-11884-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11884-8

Navigation