Skip to main content
Log in

A homogeneous Zr based polyoxometalate coupled with Ppy/PTA for efficient photocatalytic degradation of organic pollutants

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The synthesis of polymers by an oxidation-mediated approach effectively resulted in the generation of a polymer/phosphotungstic acid-zirconia nanohybrid. Characterization techniques, including XRD, FT-IR, Raman spectroscopy, and DRS–UV, were investigated to the synthesized material. High resolution transmission electron microscopy and high resolution scanning electron microscopy were used to study the morphological analysis of the synthesized nanocomposites. The results of the morphological analysis reveal that the polymer developed on the outside of the nanoparticles, increasing its ability to absorb visible light. With the use of X-ray photoelectron spectroscopy, the chemical composition was assessed. By degrading pollutants like methylene blue (MB) dye and 2,4-dichlorophenoxyacetic acid (2,4-D), the catalytic performance of a nanohybrid fabricated from polypyrrole (PPy) and phosphotungstic acid zirconia under visible light stimulation was examined. According to the observation, PPy/PTA-ZrO2 (1:3) breaks down MB dye more effectively, up to 94%, whereas PPy/PTA-ZrO2 (2:1) performs better, breaking down 2,4-D up to 90%. According to the observed results, polymer nanohybrids have been proven to be beneficial in photodegrading different types of pollutants when exposed to visible light. The polymer hybrid is more appropriate for environmental remediation due to its low cost, ease of manufacture, and increased photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data will be made available on reasonable request.

References

  1. Z. Zhu, F. Guo, A. Li, W. Xu, X. Zhang, J. Environ. Sci. 134, 65 (2023)

    Article  Google Scholar 

  2. H.-J. Kim, K. Hong, Materials 16, 3132 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. H. Issa Hamoud, L. Wolski, I. Pankin, M.A. Bañares, M. Daturi, M. El-Roz, Top. Curr. Chem. 380, 37 (2022)

    Article  CAS  Google Scholar 

  4. P. K. Lam, J.-J. Liao, M.-C. Lin, Y.-H. Li, T.-H. Wang, H.-K. Huang, Y.-A. Hsu, H.-Y. P. Hsieh, P.-Y. Kuan, C.-T. Chen, G.-X. Hao, C.-K. Tsung, K. C.-W. Wu, A. Šutka, M. Kinka, L.-Y. Chou, F.-K. Shieh, Inorg. Chem. 62, 14896 (2023)

  5. L. Wang, Y. Pan, Z. Wang, Y. Wang, X. Wei, ACS Appl. Mater. Interfaces 15, 44109 (2023)

  6. J. M. Morgan, J. Jelenska, D. K. Hensley, P. Li, B. R. Srijanto, S. T. Retterer, R. F. Standaert, J. L. Morrell-Falvey, J. T. Greenberg, J. Vis. Exp. (2023). https://doi.org/10.3791/65602

  7. A. Padmanaban, T. Dhanasekaran, S. Dhanavel, R. Manigandan, M. Senthil Pandian, P. Ramasamy, D. Balaganesh, J. Mater. Sci. Mater. Electron. 33, 9358–9367 (2022)

    Article  CAS  Google Scholar 

  8. S. K. Parida, T. Barik, B. A. Chalke, S. Amirthapandian, H. Jena, ACS Appl. Mater. Interfaces. 15, 44597 (2023)

  9. G. Zeng, Q. Sun, S. Horta, S. Wang, X. Lu, C. Y. Zhang, J. Li, J. Li, L. Ci, Y. Tian, M. Ibáñez, A. Cabot, Adv. Mater. e2305128 (2023). https://doi.org/10.1002/adma.202305128

  10. J.-G. Wang, H. Liu, H. Liu, W. Hua, M. Shao, A.C.S. Appl, Mater. Interfaces 10, 18816 (2018)

    Article  CAS  Google Scholar 

  11. R. Xue, Y.-S. Liu, M.-Y. Wang, H. Guo, W. Yang, G.-Y. Yang, Mater. Horiz. 10, 4710 (2023)

  12. X. Zhang, T. Ai, Y. Huang, Y. Zhao, L. Han, J. Lu, J. Nanosci. Nanotechnol. 19, 98 (2019)

    Article  CAS  PubMed  Google Scholar 

  13. E. B. Benalcazar Jalkh, I. S. Ramalho, E. T. P. Bergamo, L. M. M. Alves, R. Tanaka, L. Witek, P. G. Coelho, R. Hirata, E. A. Bonfante, J. Esthet. Restor. Dent. (2023). https://doi.org/10.1111/jerd.13127.

  14. E.-S.R. Khattab, S.S. Abd El Rehim, W.M.I. Hassan, T.S. El-Shazly, ACS Omega 6, 30061 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. T. Matei, V. Tiron, R. Jijie, G. Bulai, I.-L. Velicu, D. Cristea, V. Crăciun, Front. Chem. 11, 1239964 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. H. Oh, E. K. Searles, S. Chatterjee, Z. Jia, S. A. Lee, S. Link, C. F. Landes, ACS Nano. 17, 18280 (2023)

  17. A. Padmanaban, S. Bharathkumar, T. Dhanasekaran, R. Manigandan, M.S. Pandian, P. Ramasamy, D. Kathirvelu, H. Valdes, Surf. Interfaces 32, 102124 (2022)

    Article  CAS  Google Scholar 

  18. S. Muthamizh, C. Sengottaiyan, R. Jayavel, V. Narayanan, J. Nanosci. Nanotechnol. 20, 2823 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. R. Wang, C.V. Reddy, A. Nagar, S. Basu, N.P. Shetti, B. Cheolho, J. Shim, R.R. Kakarla, Chemosphere 341, 139955 (2023)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. W. Kim, H.-J. Lee, S.J. Yoo, C. Kim Trinh, Z. Ahmad, J.-S. Lee, Nanoscale 13, 5868 (2021)

    Article  CAS  PubMed  Google Scholar 

  21. M. Seike, M. Uda, T. Suzuki, H. Minami, S. Higashimoto, T. Hirai, Y. Nakamura, S. Fujii, ACS Omega 7, 13010 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. X. Cheng, M. Wei, G. Tian, Y. Luo, W. Hua, J. Phys. Chem. A 126, 5582 (2022)

    Article  CAS  PubMed  Google Scholar 

  23. J. Cheng, L. Chen, X. Xie, K. Feng, H. Sun, Y. Qin, W. Hua, Z. Zheng, Y. He, W. Pan, W. Yang, F. Lyu, J. Zhong, Z. Deng, Y. Jiao, Y. Peng, Angew. Chem. Int. Ed Engl. 62, e202312113 (2023)

  24. V. Kumar, S. Kalia, H.C. Swart, Conducting polymer hybrids (Springer, Cham, 2016)

    Google Scholar 

  25. X.-M. Zhao, Y.-K. Wei, K. Zhang, Z.-W. Zhao, S. Wang, W. Miao, S.-X. Du, S.-J. Zhang, W.-F. Li, C.-L. Guan, L.-P. Shi, X.-P. Lu, S.-K. Xu, Spectrochim. Acta A Mol. Biomol. Spectrosc. 274, 121107 (2022)

    Article  CAS  PubMed  Google Scholar 

  26. N. Karak, Nanomaterials and polymer nanocomposites: raw materials to applications (Elsevier, Amsterdam, 2018)

    Google Scholar 

  27. P. Annamalai, D. Thangavelu, M. Ramadoss, S. Subramani, S.P. Muthu, R. Perumalsamy, S. Ranganathan, V. Hector, Colloids Interface Sci. Commun. 45, 100523 (2021)

    Article  CAS  Google Scholar 

  28. A. Al-Ahmed, Inamuddin, Advanced applications of micro and nano clay II: synthetic polymer composites (Materials Research Forum LLC, Millersville, 2022)

    Book  Google Scholar 

  29. Y. Deligiannakis, A. Mantzanis, A. Zindrou, S. Smykala, M. Solakidou, Sci. Rep. 12, 15132 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. D. Prakashbabu, R. Hari Krishna, B.M. Nagabhushana, H. Nagabhushana, C. Shivakumara, R.P.S. Chakradar, H.B. Ramalingam, S.C. Sharma, R. Chandramohan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 216 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. S.K. Srivastava, V. Mittal, Hybrid nanomaterials: advances in energy, environment, and polymer nanocomposites (Wiley, Hoboken, 2017)

    Book  Google Scholar 

  32. K. Kavosi Rakati, M. Mirzaei, S. Maghsoodi, A. Shahbazi, Int. J. Biol. Macromol. 130, 1025 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. X.-D. Wang, Y. Li, T.-T. Dai, X.-M. He, M.-S. Chen, C.-M. Liu, R.-H. Liang, J. Chen, Carbohydr. Polym. 260, 117811 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. Z. Azdad, L. Marot, L. Moser, R. Steiner, E. Meyer, Sci. Rep. 8, (2018)

  35. F. Ozaki, S. Tanaka, Y. Choi, W. Osada, K. Mukai, M. Kawamura, M. Fukuda, M. Horio, T. Koitaya, S. Yamamoto, I. Matsuda, T. Ozaki, J. Yoshinobu, Chemphyschem (2023)

  36. A. Ma, Y. Wei, Z. Zhou, W. Xu, F. Ren, H. Ma, J. Wang, Polym. Degrad. Stab. 97, 125–131 (2012)

    Article  CAS  Google Scholar 

  37. S. Ameen, M.S. Akhtar, Y.S. Kim, H.S. Shin, Appl. Catal. B Environ. 103, 136–142 (2011)

    Article  CAS  Google Scholar 

  38. U. Mary Nisha, M.J. Umapathy, A. Sivasamy, J. Mater. Sci. Mater. Electron. 32, 14791–14800 (2021)

    Article  CAS  Google Scholar 

  39. M. Suresh, A. Sivasamy, J. Mol. Liq. 317, 114112 (2020)

    Article  CAS  Google Scholar 

  40. J. Liu, S. Han, J. Li, J. Lin, RSC Adv. 4, 37556–37562 (2014)

    Article  ADS  CAS  Google Scholar 

  41. H. Fu, C. Pan, W. Yao, Y. Zhu, J. Phys. Chem. B 109, 22432–22439 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. G. Meenakshi, A. Sivasamy, Ecotoxicol. Environ. Saf. 135, 243–251 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author (SS) acknowledges the Chemistry Department (IIT, Madras) for providing XRD facilities, SAIF (IIT, Madras) for IR, Raman, HR-SEM and NCCR(IIT, Madras) for HR-TEM facilities. We acknowledge the DRS-UV facility provided by DST PURSE RESEARCH FACILITY, UNIVERSITY OF MADRAS and XPS facility provided by ACNSMM, Cochin.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SS: Methodology and experimental, writing original draft. SM: Methodology and experimental, Formal analysis, writing original draft, and editing. KAV: Formal analysis, editing and Support. VN: Formal analysis.

Corresponding authors

Correspondence to S. Sampurnam or S. Muthamizh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 253 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampurnam, S., Muthamizh, S., Varman, K.A. et al. A homogeneous Zr based polyoxometalate coupled with Ppy/PTA for efficient photocatalytic degradation of organic pollutants. J Mater Sci: Mater Electron 35, 122 (2024). https://doi.org/10.1007/s10854-023-11817-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11817-5

Navigation