Skip to main content
Log in

White light emission and energy transfer in RE3+ doped CeF3 nanoparticles guided by first principles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of fluorescent materials, called CeF3: Tb3+, Eu3+ nanoparticles, are synthesized by a hydrothermal method. These nanoparticles are used in w-LEDs, which can be excited by different UV ranges. The VASP is used as the first principles simulation that analyzes the influence of structure on luminescence. Results show that the CeF3: Tb3+, Eu3+ nanoparticles are excited at 394 nm and two sharp red–orange emissions close to 600 nm are seen. Under excitations at 276 and 378 nm, the energy transfer effect of the Ce3+–Tb3+–Eu3+ bridge appears, which results in the emission of white light. Moreover, the energy transfer efficiency and the concentration quenching are studied and analyzed via Dexter theory. Our results clearly suggest that CeF3: Tb3+, Eu3+ nanoparticles will be useful in lighting and display materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Z.L. Wang, Z.W. Quan, P.Y. Jia, C.K. Lin, Y. Luo, Y. Chen, J. Fang, W. Zhou, C.J. O’Connor, J. Lin, A facile synthesis and photoluminescent properties of redispersible CeF3, CeF3: Tb3+, and CeF3: Tb3+/LaF3 (core/shell) nanoparticles. Chem. Mater. 18(8), 2030–2037 (2006). https://doi.org/10.1021/cm052360x

    Article  CAS  Google Scholar 

  2. C.Y. Zhang, Q. Jiang, X.Y. Wang, J. Liu, Y.T. Xiao, C. Li, H. Lin, F.M. Zeng, Z.M. Su, A novel scheme to acquire enhanced up-conversion emissions of Ho3+ and Yb3+ co-doped Sc2O3. Curr. Appl. Phys. 20(1), 82–88 (2020). https://doi.org/10.1016/j.cap.2019.10.002

    Article  CAS  ADS  Google Scholar 

  3. S. Eiden-Assmann, G. Maret, CeF3 nanoparticles: synthesis and characterization. Mater. Res. Bull. 39(1), 21–24 (2004). https://doi.org/10.1016/j.materresbull.2003.09.024

    Article  CAS  Google Scholar 

  4. C.Y. Zhang, X.Y. Wang, C. Li, H. Lin, F.M. Zeng, Z.M. Su, Effect of Li ions on structure and spectroscopic properties of NaY(WO4)2: Yb/Ho phosphor. Ceram. Int. 46(15), 24248–24256 (2020). https://doi.org/10.1016/j.ceramint.2020.06.205

    Article  CAS  Google Scholar 

  5. Z.G. Xia, A. Meijerink, Ce3+-doped garnet phosphors: composition modification, luminescence properties and applications. Chem. Soc. Rev. 46(1), 275–299 (2017). https://doi.org/10.1039/C6CS00551A

    Article  CAS  PubMed  Google Scholar 

  6. X. Wang, C. Zhang, D. Hu, W. Li, H. Lin, F. Zeng, C. Li, Z. Su, Influence of Yb ions concentration on Ho: BaY2F8 crystals emission in the range of 1–3 μm. Opt. Mater. 109, 110141 (2020). https://doi.org/10.1016/j.optmat.2020.110141

    Article  CAS  Google Scholar 

  7. W.L. Yang, X.Y. Wang, Z. Leng, H. Lin, F.M. Zeng, C. Li, Z.M. Su, Er, Yb: CeF3 red emission nanoparticles with controllable size and enhanced luminescence properties. J. Mater. Sci. Mater. Electron. 32(7), 8213–8225 (2021). https://doi.org/10.1007/s10854-020-05139-z

    Article  CAS  Google Scholar 

  8. Z. Leng, X.Y. Wang, W.L. Yang, W.J. Yang, T.Q. Zhang, X.L. Jiang, F.M. Zeng, C. Li, H. Lin, Z.M. Su, Study on the optical properties of Er, Yb: KY(WO4)2 nanoparticles doped with different concentrations of Na+ ions. J. Lumin. (2021). https://doi.org/10.1016/j.jlumin.2021.118160

    Article  Google Scholar 

  9. X.L. Jiang, X.Y. Wang, X.M. Shi, H.Y. Sha, W.J. Yang, W.L. Yang, Z. Leng, H. Lin, Z.M. Su, C. Li, F.M. Zeng, Effect of Mn4+ ions on the structure and luminescence properties of NaY(MoO4)2: Yb3+/Er3+ phosphor. Opt. Mater. 113, 110873 (2021). https://doi.org/10.1016/j.optmat.2021.110873

    Article  CAS  Google Scholar 

  10. B. Wang, B.H. Xu, T.F. Liu, P. Liu, C.F. Guo, S. Wang, Q.M. Wang, Z.G. Xiong, D.L. Wang, X.S. Zhao, Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries. Nanoscale 6(2), 986–995 (2014). https://doi.org/10.1039/C3NR04611G

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Z.F. Wei, G.C. Che, F.M. Wang, W.C. Wang, M. He, X.L. Chen, Debye temperature of MgB2. Mod. Phys. Lett. B 15(25), 1109–1115 (2001). https://doi.org/10.1142/S0217984901002889

    Article  CAS  ADS  Google Scholar 

  12. F. Wang, Z.W. Fang, Y. Zhang, Polyethylene glycol-induced growth of LiFePO4 platelets with preferentially exposed (010) plane as a cathode material for lithium ion battery. J. Electroanal. Chem. 775, 110–115 (2016). https://doi.org/10.1016/j.jelechem.2016.05.041

    Article  CAS  Google Scholar 

  13. X. Geng, Y. Xie, S.S. Chen, J.M. Luo, S.C. Li, T. Wang, S.C. Zhao, H. Wang, B. Deng, R.J. Yua, W.M. Zhou, Enhanced local symmetry achieved zero-thermal-quenching luminescence characteristic in the Ca2InSbO6: Sm3+ phosphors for w-LEDs. Chem. Eng. J. 410, 128396 (2021). https://doi.org/10.1016/j.cej.2020.128396

    Article  CAS  Google Scholar 

  14. Ü.H. Kaynar, S.C. Kaynar, M. Ayvacikli, Y. Karabulut, G.O. Souadi, N. Can, Influence of laser excitation power on temperature-dependent luminescence behaviour of Ce-and Tb-incorporated BaMgAl10O17 phosphors. Radiat. Phys. Chem. 168, 108617 (2020). https://doi.org/10.1016/j.radphyschem.2019.108617

    Article  CAS  Google Scholar 

  15. S. Gayathri, O.S.N. Ghosh, P. Sudhakara, A.K. Viswanath, Chitosan conjugation: a facile approach to enhance the cell viability of LaF3: Yb, Er upconverting nanotransducers in human breast cancer cells. Carbohyd. Polym. 121, 302–308 (2015). https://doi.org/10.1016/j.carbpol.2014.12.022

    Article  CAS  Google Scholar 

  16. D. Solís, T.L. Luke, E.D.L. Rosa, P. Salas, C.A. Chavez, Surfactant effect on the up-conversion emission and decay time of ZrO2: Yb–Er nanocrystals. J. Lumin. 129(5), 449–455 (2009). https://doi.org/10.1016/j.jlumin.2008.11.015

    Article  CAS  ADS  Google Scholar 

  17. A.K. Singh, K. Kumar, S.B. Rai, D. Kumar, Up-conversion studies on Yb3+/Er3+ doped CeO2 and CeF3 phosphors: Enhanced near infrared emission. Solid State Commun. 169, 1–5 (2013). https://doi.org/10.1016/j.ssc.2013.06.023

    Article  CAS  ADS  Google Scholar 

  18. R.W. Liu, M.J. Chen, X.R. Zhu, Y.Y. Zhou, F.M. Zeng, Z.M. Su, Luminescent properties and structure of Dy3+ doped germanosilicate glass. J. Lumin. 226, 117378 (2020). https://doi.org/10.1016/j.jlumin.2020.117378

    Article  CAS  ADS  Google Scholar 

  19. Q.J. Ning, C.C. Zhou, Y.S. Shi, Effect of Eu3+ doping on ZnWO4 phosphors luminescent properties and study of JO theory. J. Solid State Chem. 290, 121458 (2020). https://doi.org/10.1016/j.jssc.2020.121458

    Article  CAS  Google Scholar 

  20. K. Anilkumar, S. Damodaraiah, S. Babu, V.R. Prasad, Y.C. Ratnakaram, Emission spectra and energy transfer studies in Dy3+ and Dy3+/Eu3+ co-doped potassium fluorophosphate glasses for white light applications. J. Lumin. 205, 190–196 (2019). https://doi.org/10.1016/j.jlumin.2018.09.007

    Article  CAS  ADS  Google Scholar 

  21. S.M. Liu, G.L. Zhao, H. Ying, J.X. Wang, G.R. Han, Eu/Dy ions co-doped white light luminescence zinc–aluminoborosilicate glasses for white LED. Opt. Mater. 31(1), 47–50 (2008). https://doi.org/10.1016/j.optmat.2008.01.007

    Article  CAS  ADS  Google Scholar 

  22. A. Shyichuk, M. Runowski, S. Lis, J. Kaczkowski, A. Jezierski, Semiempirical and DFT computations of the influence of Tb (III) dopant on unit cell dimensions of cerium (III) fluoride. J. Comput. Chem. 36(3), 193–199 (2015). https://doi.org/10.1002/jcc.23789

    Article  CAS  Google Scholar 

  23. Y. Chen, J. Zhang, Investigation on luminescence of bifunctional Y4.67(SiO4)3O: Ce3+/Tb3+/Eu3+ phosphors. J. Lumin. 218, 116842 (2020). https://doi.org/10.1016/j.jlumin.2019.116842

    Article  CAS  ADS  Google Scholar 

  24. H. Miao, G.F. Huang, L. Xu, Y.C. Yang, K. Yang, W.Q. Huang, A novel photocatalyst CeF3: facile fabrication and photocatalytic performance. RSC Adv. 5(115), 95171–95177 (2015). https://doi.org/10.1039/C5RA12447F

    Article  CAS  ADS  Google Scholar 

  25. C.L. Li, B. Wang, R. Wang, H. Wang, First-principles studies on the electronic and optical properties of CeCl3 and CeBr 3. Solid State Commun. 144(5–6), 220–224 (2007). https://doi.org/10.1016/j.ssc.2007.08.040

    Article  CAS  ADS  Google Scholar 

  26. A. Canning, A. Chaudhry, R. Boutchko, N.G. Jensen, First-principles study of luminescence in Ce-doped inorganic scintillators. Phys. Rev. B 83(12), 125115 (2011). https://doi.org/10.1103/PhysRevB.83.125115

    Article  CAS  ADS  Google Scholar 

  27. T. Tsuchiya, T. Taketsugu, H. Nakano, K. Hirao, Theoretical study of electronic and geometric structures of a series of lanthanide trihalides LnX3 (Ln= La–Lu; X= Cl, F). J. Mol. Struct. 461, 203–222 (1999). https://doi.org/10.1016/S0166-1280(98)00461-8

    Article  Google Scholar 

  28. I. Ahemen, F.B. Dejene, Site spectroscopy probing of Eu3+ incorporated into novel LiYxSryZrO3+ α host matrix. Curr. Appl. Phys. 18(11), 1359–1367 (2018). https://doi.org/10.1016/j.cap.2018.07.021

    Article  ADS  Google Scholar 

  29. S.R. Nan, F. Hong, H.P. Xu, J.Z. Dou, G.X. Liu, X.T. Dong, J.X. Wang, W.S. Yu, Luminescence properties and energy transfer of Tb3+, Eu3+ co-doped YTaO4 phosphors obtained via sol–gel combustion process. J. Mater. Sci. 31(16), 13688–13695 (2020). https://doi.org/10.1007/s10854-020-03926-2

    Article  CAS  Google Scholar 

  30. D. Zhao, S.R. Zhang, R.J. Zhang, Y.P. Fan, B.Z. Liu, L.Y. Shi, Energy transfer, multi-colour emission and high thermal stability behaviour of K2Tb1−xEux Hf (PO4)3 with langbeinite-type structure. Cryst. Eng. Comm. 22(29), 4914–4922 (2020). https://doi.org/10.1039/D0CE00322K

    Article  CAS  ADS  Google Scholar 

  31. S. Marchesi, C. Bisio, F. Carniato, Novel light-emitting clays with structural Tb3+ and Eu3+ for chromate anion detection. RSC Adv. 10(50), 29765–29771 (2020). https://doi.org/10.1039/D0RA05693F

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. W.L. Lian, P. Liang, Z.H. Liu, Controllable hydrothermal synthesis and morphology evolution of Zn4B6O13: Tb/Eu phosphors with tunable luminescent properties. Adv. Powder Technol. 31(4), 1633–1642 (2020). https://doi.org/10.1016/j.apt.2020.02.004

    Article  CAS  Google Scholar 

  33. J.W. Ran, X.G. Zhao, X.Y. Hu, Y.M. Chen, Z.F. Tian, 3D Tb (III) and Eu (III) coordination polymers with mixed dicarboxylate ligands: synthesis, structure and luminescence properties. Polyhedron 194, 114910 (2021). https://doi.org/10.1016/j.poly.2020.114910

    Article  CAS  Google Scholar 

  34. A.C. Yane, J.D. Castillo, E. Ortiz, Energy transfer and tunable emission in BaGdF5: RE3+ (RE = Ce, Tb, Eu) nano-glass-ceramics. J. Alloys Compds. 773, 1099–1107 (2019). https://doi.org/10.1016/j.jallcom.2018.09.149

    Article  CAS  Google Scholar 

  35. S.X. Liu, Y. Hui, L. Zhu, X.Z. Fan, B.L. Zou, X.Q. Cao, Synthesis and luminescence properties of CeF3: Tb3+ nanodisks via ultrasound assisted ionic liquid method. J. Rare Earths 32(6), 508–513 (2014). https://doi.org/10.1016/S1002-0721(14)60100-9

    Article  CAS  Google Scholar 

  36. H.J. Chen, X.P. Wang, L.J. Wang, X.L. Ke, R.M. Ning, M.L. Song, L.H. Liu, Bright blue electroluminescence of diamond/CeF3 composite films. Carbon 109, 192–195 (2016). https://doi.org/10.1016/j.carbon.2016.07.061

    Article  CAS  Google Scholar 

  37. J.W. Du, X.Y. Pan, Z.P. Liu, Y.T. Jing, B.C. Wang, L.H. Luo, J. Wang, P. Du, Highly efficient Eu3+-activated Ca2Gd8Si6O26 red-emitting phosphors: a bifunctional platform towards white light-emitting diode and ratiometric optical thermometer applications. J. Alloys Compds. 859, 157843 (2021). https://doi.org/10.1016/j.jallcom.2020.157843

    Article  CAS  Google Scholar 

  38. P. Jha, A. Khare, SrAl2O4: Eu, Dy mechanoluminescent flexible film for impact sensors. J. Alloys Compds. 847, 156428 (2020). https://doi.org/10.1016/j.jallcom.2020.156428

    Article  CAS  Google Scholar 

  39. S.Y. Wang, B. Devakumar, Q. Sun, J. Liang, L.L. Sun, X.Y. Huang, Highly efficient near-UV-excitable Ca2YHf2Al3O12: Ce3+, Tb3+ green-emitting garnet phosphors with potential application in high color rendering warm-white LEDs. J. Mater. Chem. C 8(13), 4408–4420 (2020). https://doi.org/10.1039/D0TC00130A

    Article  CAS  Google Scholar 

  40. X.X. Zheng, M.L. Yang, G.H. Wang, W.L. Zhou, J.L. Zhang, L.P. Yu, P. Wang, Z.X. Qiu, C.Z. Li, S.X. Lian, Luminescence tuning of Tb/Eu Co-doped zinc aluminoborosilicate glasses for white LED applications. Ceram. Int. 46(17), 26608–26615 (2020). https://doi.org/10.1016/j.ceramint.2020.07.129

    Article  CAS  Google Scholar 

  41. H.L. Li, G.X. Liu, J.X. Wang, X.T. Dong, W.S. Yu, Eu3+/Tb3+ doped cubic BaGdF5 multifunctional nanophosphors: Multicolor tunable luminescence, energy transfer and magnetic properties. J. Lumin. 186, 6–15 (2017). https://doi.org/10.1016/j.jlumin.2017.02.005

    Article  CAS  ADS  Google Scholar 

  42. M. Kumar, T.K. Seshagiri, M. Mohapatra, V. Natarajan, S.V. Godbole, Synthesis, characterization and studies of radiative properties on Eu3+-doped ZnAl2O4. J. Lumin. 132(10), 2810–2816 (2012). https://doi.org/10.1016/j.jlumin.2012.04.033

    Article  CAS  ADS  Google Scholar 

  43. G. Melis, Development of Eu3+ doped bismuth germanate glasses for red laser applications. J. Non-cryst. Solids 505, 272–278 (2019). https://doi.org/10.1016/j.jnoncrysol.2018.11.011

    Article  CAS  Google Scholar 

  44. A. Patra, E. Sominska, S. Ramesh, Y. Koltypin, Z. Zhong, H. Minti, R. Reisfeld, A. Gedanken, Sonochemical preparation and characterization of Eu2O3 and Tb2O3 doped in and coated on silica and alumina nanoparticles. Indian. J. Chem. A 103(17), 3361–3365 (1999). https://doi.org/10.1021/jp984766l

    Article  CAS  Google Scholar 

  45. Z.G. Xia, R.S. Liu, Tunable blue-green color emission and energy transfer of Ca2Al3O6F: Ce3+, Tb3+ phosphors for near-UV white LEDs. J. Phys. Chem. C 116(29), 15604–15609 (2012). https://doi.org/10.1021/jp304722z

    Article  CAS  Google Scholar 

  46. W.L. Yang, Z.Y. Zhang, X. Zhang, X.T. Wang, X.L. Jiang, Z. Leng, H. Lin, F.M. Zeng, C. Li, Z.M. Su, Enhancement of fluorescence and magnetic properties of CeF3: RE3+ (Tb, Gd) nanoparticles via multi-band UV excitation and Li doping regulation. Ceram. Int. 47, 16450–16459 (2021). https://doi.org/10.1016/j.ceramint.2021.01.150

    Article  CAS  Google Scholar 

  47. W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+. J. Chem. Phys. 49(10), 4450–4455 (1968). https://doi.org/10.1063/1.1669896

    Article  CAS  ADS  Google Scholar 

  48. G.S. Ofelt, Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37(3), 511–520 (1962). https://doi.org/10.1063/1.1701366

    Article  CAS  ADS  Google Scholar 

  49. Q.J. Ning, Q. Bo, Y.S. Shi, Effect of alkali metal ions on the spectra of CaZn2(PO)2: Sm3+ phosphor analyzed by JO theory. J. Lumin. 206, 498–508 (2019). https://doi.org/10.1016/j.jlumin.2018.10.101

    Article  CAS  ADS  Google Scholar 

  50. Y.Q. Zhang, B.J. Chen, S. Xu, X.P. Li, J.S. Zhang, J.S. Sun, X.Q. Zhang, H.P. Xia, R.N. Hua, A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the β-NaYF4: Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation. Phys. Chem. Chem. Phys. 20(23), 15876–15883 (2018). https://doi.org/10.1039/C8CP02317D

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Government Funded Projects (627010104) and Jilin Provincial Department Education (JJKH20240930KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiling Yang or Yong Yang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yang, W., Shi, Z. et al. White light emission and energy transfer in RE3+ doped CeF3 nanoparticles guided by first principles. J Mater Sci: Mater Electron 35, 103 (2024). https://doi.org/10.1007/s10854-023-11767-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11767-y

Navigation