Skip to main content
Log in

Chitosan/oxidized-dextran dressings containing mesoporous bioglass nanoparticles for hemostatic applications

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hemorrhage control is crucial in both military and civilian contexts. Despite unprecedented improvements in hemostatic products, efficient treatment solutions to control hemorrhage upon wound healing are still necessary. Chitosan (CS) and dextran (Dex) are natural, biocompatible and biodegradable hydrogel-forming polysaccharides with enhanced hemostatic and wound healing properties. Bioglass nanoparticles (BG-nps) in turn possess documented hemostatic properties. In this context, in the present work, a series of BGnps-doped chitosan (CS)/oxidized-dextran (ODEX) adhesive sponges were developed through a Schiff base reaction. The successful synthesis of the materials was confirmed by FTIR spectroscopy, their crystallinity was analyzed by XRD, the sponge morphology was investigated by SEM analysis, water swelling, and viscosity of the hydrogels were also investigated. All materials were developed in powder and sponge form with the aim to allow their application to wound lesions of any shape and depth and enable suppression of external bleeding for which other methods of bleeding control are not applicable. All prepared hemostatic products showed hemocompatibility, and it was observed that the CS-ODEX-BGnps sponges decreased the blood clotting time compared to CS neat and mainly those with the highest percentages of BGnps (1% and 2% w/w).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Huang Z, Wang D, Sønderskov SM, Xia D, Wu X, Liang C et al (2023) Tannic acid-functionalized 3D porous nanofiber sponge for antibiotic-free wound healing with enhanced hemostasis, antibacterial, and antioxidant properties. J Nanobiotechnol 21(1):1–15

    Article  CAS  Google Scholar 

  2. Zhang H, Lv X, Zhang X, Wang H, Deng H, Li Y et al (2015) Antibacterial and hemostatic performance of chitosan-organic rectorite/alginate composite sponge. RSC Adv 5(62):50523–50531

    Article  CAS  Google Scholar 

  3. Khoshmohabat H, Paydar S, Makarem A, Karami MY, Dastgheib N, Zahraei SAH et al (2019) A review of the application of cellulose hemostatic agent on trauma injuries. Open Access Emerg Med 11:171–177

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bagher Z, Ehterami A, Hossein M, Khastar H (2019) Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J Drug Deliv Sci Technol 2020(55):101379

    Google Scholar 

  5. Bai Q, Gao Q, Hu F, Zheng C, Chen W, Sun N et al (2022) Chitosan and hyaluronic-based hydrogels could promote the infected wound healing. Int J Biol Macromol 232:123271

    Article  Google Scholar 

  6. Elieh Ali Komi D, Sharma L, Dela Cruz CS (2018) Chitin and its effects on inflammatory and immune responses. Clin Rev Allergy Immunol 54(2):213–223

    Article  CAS  PubMed  Google Scholar 

  7. Lazaridou M, Bikiaris DN, Lamprou DA (2022) 3D bioprinted chitosan-based hydrogel scaffolds in tissue engineering and localised drug delivery. Pharmaceutics 14(9):1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding A, Teng L, Zhou Y, Chen P, Nie W (2018) Synthesis and characterization of bovine serum albumin-loaded microspheres based on star-shaped PLLA with a xylitol core and their drug release behaviors. Polym Bull 75(7):2917–2931

    Article  CAS  Google Scholar 

  9. Applications A. Chemical Engineering Journal Ultrafast in situ-forming hydrogels with enhanced hemostatic and antibacterial activities for effective wound management in trauma emergency.

  10. Liu J, Zhou X, Zhang Y, Zhu W, Wang A, Xu M et al (2022) Rapid hemostasis and excellent antibacterial cerium-containing mesoporous bioactive glass/chitosan composite sponge for hemostatic material. Mater Today Chem 23:100735

    Article  CAS  Google Scholar 

  11. Mehrabi T, Mesgar AS, Mohammadi Z (2020) Bioactive glasses: a promising therapeutic ion release strategy for enhancing wound healing. ACS Biomater Sci Eng 6(10):5399–5430

    Article  CAS  PubMed  Google Scholar 

  12. Roy P, Saha R, Dattaray D, Saha S, Mandal TK, Srivastava P et al (2024) Bioactive glass incorporated dressing matrix for rapid hemostatic action with antibacterial activity. Mater Chem Phys 315:128942

    Article  CAS  Google Scholar 

  13. Li Z, Li B, Li X, Lin Z, Chen L, Chen H et al (2021) Ultrafast in-situ forming halloysite nanotube-doped chitosan/oxidized dextran hydrogels for hemostasis and wound repair. Carbohydr Polym 267(April):118155

    Article  CAS  PubMed  Google Scholar 

  14. Peng T, De YK, Yuan C, Goosen MFA (1994) Structural changes of pH-sensitive chitosan/polyether hydrogels in different pH solution. J Polym Sci A Polym Chem 32(3):591–596

    Article  CAS  Google Scholar 

  15. Marzocco S, Saebø IP, Bjørås M, Franzyk H, Helgesen E, Booth JA (2023) Optimization of the hemolysis assay for the assessment of cytotoxicity. Int J Mol Sci. https://doi.org/10.3390/ijms24032914

    Article  PubMed  PubMed Central  Google Scholar 

  16. Koumentakou I, Terzopoulou Z, Michopoulou A, Kalafatakis I, Theodorakis K, Tzetzis D et al (2020) Chitosan dressings containing inorganic additives and levofloxacin as potential wound care products with enhanced hemostatic properties. Int J Biol Macromol 162:693–703

    Article  CAS  PubMed  Google Scholar 

  17. Esmaeilzadeh J, Borhan S, Haghbin M, Khorsand ZA (2024) Assessments of EISA-synthesized mesoporous bioactive glass incorporated in chitosan-gelatin matrix as potential nanocomposite scaffolds for bone regeneration. Int J Polym Mater Polym Biomater 73(8):646–660

    Article  CAS  Google Scholar 

  18. Lazaridou M, Nanaki S, Zamboulis A, Papoulia C, Chrissafis K, Klonos PA et al (2021) Super absorbent chitosan-based hydrogel sponges as carriers for caspofungin antifungal drug. Int J Pharm 606:120925

    Article  CAS  PubMed  Google Scholar 

  19. Guinesi LS, Cavalheiro ÉTG (2006) Influence of some reactional parameters on the substitution degree of biopolymeric Schiff bases prepared from chitosan and salicylaldehyde. Carbohydr Polym 65(4):557–561

    Article  CAS  Google Scholar 

  20. Khalil KD, Ahmed HA, Bashal AH, Bräse S, Nayl AA, Gomha SM (2022) Thiazoles with a chitosan-capped calcium oxide nanocomposite. Polymers (Basel) 14:3347

    Article  CAS  PubMed  Google Scholar 

  21. Khalil KD, Riyadh SM, Alkayal NS, Bashal AH, Alharbi KH, Alharbi W (2022) Chitosan-strontium oxide nanocomposite: preparation, characterization, and catalytic potency in thiadiazoles synthesis. Polymers (Basel) 14(14):2827

    Article  CAS  PubMed  Google Scholar 

  22. Tang ESK, Huang M, Lim LY (2003) Ultrasonication of chitosan and chitosan nanoparticles. Int J Pharm 265(1–2):103–114

    Article  CAS  PubMed  Google Scholar 

  23. Wang T, Nie J, Yang D (2012) Dextran and gelatin based photocrosslinkable tissue adhesive. Carbohydr Polym 90(4):1428–1436

    Article  CAS  PubMed  Google Scholar 

  24. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1879

    Article  CAS  PubMed  Google Scholar 

  25. Hunt JA, Chen R, Van Veen T, Bryan N (2014) Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B 2(33):5319–5338

    Article  CAS  PubMed  Google Scholar 

  26. Tavares L, Esparza Flores EE, Rodrigues RC, Hertz PF, Noreña CPZ (2020) Effect of deacetylation degree of chitosan on rheological properties and physical chemical characteristics of genipin-crosslinked chitosan beads. Food Hydrocoll 106:105876

    Article  CAS  Google Scholar 

  27. Weng L, Chen X, Chen W (2007) Rheological characterization of in situ crosslinkable hydrogels formulated from oxidized dextran and N-carboxyethyl chitosan. Biomacromol 8(4):1109–1115

    Article  CAS  Google Scholar 

  28. Duan J, Liang X, Cao Y, Wang S, Zhang L (2015) High strength chitosan hydrogels with biocompatibility via new avenue based on constructing nanofibrous architecture. Macromolecules 48(8):2706–2714

    Article  CAS  Google Scholar 

  29. Wia̧cek AE, Gozdecka A, Jurak M (2018) Physicochemical characteristics of chitosan-TiO2 biomaterial. 1. Stability and swelling properties. Ind Eng Chem Res 57(6):1859–1870

    Article  Google Scholar 

  30. Ikram M, Muhammad Khan A, Haider A, Haider J, Naz S, Ul-Hamid A et al (2022) Facile synthesis of La- and chitosan-doped CaO nanoparticles and their evaluation for catalytic and antimicrobial potential with molecular docking studies. ACS Omega 7(32):28459–28470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pavoni JMF, Luchese CL, Tessaro IC (2019) Impact of acid type for chitosan dissolution on the characteristics and biodegradability of cornstarch/chitosan based films. Int J Biol Macromol 138:693–703

    Article  CAS  PubMed  Google Scholar 

  32. Gupta N, Kozlovskaya V, Dolmat M, Yancey B, Oh J, Lungu CT et al (2020) Photocatalytic nanocomposite microsponges of polylactide-titania for chemical remediation in water. ACS Appl Polym Mater 2(11):5188–5197

    Article  CAS  Google Scholar 

  33. Gheorghiță D, Moldovan H, Robu A, Bița AI, Grosu E, Antoniac A et al (2023) Chitosan-based biomaterials for hemostatic applications: a review of recent advances. Int J Mol Sci 24(13):10540

    Article  PubMed  PubMed Central  Google Scholar 

  34. Patil G, Torris A, Suresha PR, Jadhav S, Badiger MV, Ghormade V (2021) Design and synthesis of a new topical agent for halting blood loss rapidly: a multimodal chitosan-gelatin xerogel composite loaded with silica nanoparticles and calcium. Colloids Surf B Biointerfaces 198:111454

    Article  CAS  PubMed  Google Scholar 

  35. Ali SW, Mangrio FA, Li F, Dwivedi P, Rajput MU, Ali R et al (2021) Co-delivery of artemether and piperine via core-shell microparticles for enhanced sustained release. J Drug Deliv Sci Technol 63(March):102505

    Article  CAS  Google Scholar 

  36. Luanda A, Badalamoole V (2023) Past, present and future of biomedical applications of dextran-based hydrogels: a review. Int J Biol Macromol 15(228):794–807

    Article  Google Scholar 

  37. Fernandes G, Vanyo ST, Alsharif SBA, Andreana S, Visser MB, Dziak R (2019) Strontium effects on human gingival fibroblasts. J Oral Implantol 45(4):274–280

    Article  PubMed  Google Scholar 

  38. Arkin VHR, Narendrakumar U, Madhyastha H, Manjubala I (2021) Characterization and in vitro evaluations of injectable calcium phosphate cement doped with magnesium and strontium. ACS Omega 6(4):2477–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Z. Kyzas.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikiaris, R.E., Tsamesidis, I., Kontonasaki, E. et al. Chitosan/oxidized-dextran dressings containing mesoporous bioglass nanoparticles for hemostatic applications. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-10241-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-10241-2

Navigation