Skip to main content

Advertisement

Log in

Multifunctional hybrid composites from novel asphaltene-based carbon nanofiber mats and woven carbon fiber

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study reports, for the first time, the use of lower-cost, more sustainable, electrospun carbon nanofiber from asphaltene-based precursors as interleaves in multifunctional composites with improved mechanical and electrical performance. First, asphaltene-based nanomats were electrospun with and without prior asphaltene feedstock purification, including multistage purification. The carbon nanofiber mats, extracted after purification, spinning, thermal stabilization, and carbonization, exhibited improved quality and morphology with reduced beading after purification. Hybrid composites were fabricated using vacuum-assisted resin infusion, incorporating commercially available plain weave carbon fabric layers and the developed nanofiber mats as interleaves in an epoxy matrix. The nanofiber mat reinforcement increased the interlaminar shear strength of the composites by 18% without compromising flexural properties. In general, it was found that purification of asphaltene did not affect the interleave effects, whereas all nanomats resulted in similar enhancement of interlaminar strength and modulus at the interlaminar region. However, using purified nanofiber mats significantly improved the electrical conductivity of the hybrid composites, which can be attributed to an increase in their specific surface area after purification. Hybrid composites produced using purified nanofiber mats showed the highest electrical conductivity, improving both in-plane and out-of-plane conductivities by 173% and 198%, respectively, compared to control carbon fiber—epoxy composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data supporting the findings of this study are available upon request from the authors.

Abbreviations

CFRP:

Carbon fiber-reinforced polymers

CF:

Carbon fibers

PAN:

Polyacrylonitrile

ILSS:

Interlaminar shear strength

GHG:

Greenhouse gases

AOA:

Alberta oilsands asphaltene

DMF:

Dimethylformamide

THF:

Tetrahydrofuran

Mw:

Molecular weight

SEM:

Scanning electron microscope

EDX:

Energy-dispersion X-ray

XPS:

X-ray photoelectron microscopy

TGA:

Thermogravimetric analysis

ATR:

Attenuated total reflection

FTIR:

Fourier-transform infrared

BET:

Brunauer–Emmett–Teller

BJH:

Barrett, Joyner, and Halenda

AFM:

Atomic force microscopy

HOPG:

Highly ordered pyrolytic graphite

DMT:

Derjaguin–Muller–Toporov

TPU:

Thermoplastic polyurethane

SAN:

Styrene acrylonitrile

References

  1. Xu H, Tong X, Zhang Y et al (2016) Mechanical and electrical properties of laminated composites containing continuous carbon nanotube film interleaves. Compos Sci Technol 127:113–118. https://doi.org/10.1016/j.compscitech.2016.02.032

    Article  CAS  Google Scholar 

  2. Guo Y-E, Shang D-G, Zuo L-X et al (2022) Identification of fatigue damage modes for carbon fiber/epoxy composites using acoustic emission monitoring under fully reversed loading. Polym Compos 43:3371–3385. https://doi.org/10.1002/pc.26622

    Article  CAS  Google Scholar 

  3. Ahmad F, Mehboob H, Abbassi F et al (2022) Numerical investigation to evaluate the energy effect on the impact resistance of an aircraft carbon fiber-reinforced polymer composite. Mech Adv Mater Struct 29:4457–4467. https://doi.org/10.1080/15376494.2021.1931731

    Article  CAS  Google Scholar 

  4. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285. https://doi.org/10.1016/S0008-6223(00)00184-6

    Article  CAS  Google Scholar 

  5. Todoroki A, YOSHIDA J, (2004) Electrical resistance change of unidirectional CFRP due to applied load. JSME Int J Ser Solid Mech Mater Eng 47:357–364. https://doi.org/10.1299/jsmea.47.357

    Article  CAS  Google Scholar 

  6. Zhu J, Imam A, Crane R et al (2007) Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength. Compos Sci Technol 67:1509–1517. https://doi.org/10.1016/j.compscitech.2006.07.018

    Article  CAS  Google Scholar 

  7. Chen Q, Zhao Y, Zhou Z et al (2013) Fabrication and mechanical properties of hybrid multi-scale epoxy composites reinforced with conventional carbon fiber fabrics surface-attached with electrospun carbon nanofiber mats. Compos Part B Eng 44:1–7. https://doi.org/10.1016/j.compositesb.2012.09.005

    Article  CAS  Google Scholar 

  8. Vallack N, Sampson WW (2022) Materials systems for interleave toughening in polymer composites. J Mater Sci 57:6129–6156. https://doi.org/10.1007/s10853-022-06988-1

    Article  CAS  Google Scholar 

  9. Kanari K, Wisnom MR, Harniman R, Eichhorn SJ (2022) Interlaminar fracture toughness of carbon fibre composites with electrospun nanofibrous interleaves of polystyrene and cellulose nanocrystals. J Mater Sci 57:21080–21103. https://doi.org/10.1007/s10853-022-07953-8

    Article  CAS  Google Scholar 

  10. Kumar A, Sharma K, Dixit AR (2020) Carbon nanotube- and graphene-reinforced multiphase polymeric composites: review on their properties and applications. J Mater Sci 55:2682–2724. https://doi.org/10.1007/s10853-019-04196-y

    Article  CAS  Google Scholar 

  11. Chen C, Li Y, Yu T (2014) Interlaminar toughening in flax fiber-reinforced composites interleaved with carbon nanotube buckypaper. J Reinf Plast Compos 33:1859–1868. https://doi.org/10.1177/0731684414548084

    Article  CAS  Google Scholar 

  12. Hiremath N, Young S, Ghossein H et al (2020) Low cost textile-grade carbon-fiber epoxy composites for automotive and wind energy applications. Compos Part B Eng 198:108156. https://doi.org/10.1016/j.compositesb.2020.108156

    Article  CAS  Google Scholar 

  13. Fang W, Yang X, Li Q et al (2020) Improved mode l interlaminar fracture toughness of random polypropylene composite laminate via multiscale reinforcing formed by introducing functional nanofibrillated cellulose. Compos Part B Eng 203:108481. https://doi.org/10.1016/j.compositesb.2020.108481

    Article  CAS  Google Scholar 

  14. Nasirmanesh A, Singh AK, Villaflor D, Blandford B (2022) Effects of midplane carbon nanotube sheet interleave on the strength and impact damage resistance of carbon fiber reinforced polymer composites. Polym Compos 43:3085–3095. https://doi.org/10.1002/pc.26601

    Article  CAS  Google Scholar 

  15. Bilisik K, Syduzzaman Md (2021) Carbon nanotubes in carbon/epoxy multiscale textile preform composites: a review. Polym Compos 42:1670–1697. https://doi.org/10.1002/pc.25955

    Article  CAS  Google Scholar 

  16. Mulqueen DW, Sattar S, Kravchenko OG (2023) Mechanical and thermal properties of carbon fiber epoxy composite with interlaminar graphene at elevated temperature. Compos Part B Eng 255:110609. https://doi.org/10.1016/j.compositesb.2023.110609

    Article  CAS  Google Scholar 

  17. Qian X, Kravchenko OG, Pedrazzoli D, Manas-Zloczower I (2018) Effect of polycarbonate film surface morphology and oxygen plasma treatment on mode I and II fracture toughness of interleaved composite laminates. Compos Part Appl Sci Manuf 105:138–149. https://doi.org/10.1016/j.compositesa.2017.11.016

    Article  CAS  Google Scholar 

  18. Cheng C, Chen Z, Huang Z et al (2020) Simultaneously improving mode I and mode II fracture toughness of the carbon fiber/epoxy composite laminates via interleaved with uniformly aligned PES fiber webs. Compos Part Appl Sci Manuf 129:105696. https://doi.org/10.1016/j.compositesa.2019.105696

    Article  CAS  Google Scholar 

  19. Ning N, Wang M, Zhou G et al (2022) Effect of polymer nanoparticle morphology on fracture toughness enhancement of carbon fiber reinforced epoxy composites. Compos Part B Eng 234:109749. https://doi.org/10.1016/j.compositesb.2022.109749

    Article  CAS  Google Scholar 

  20. Abbasi S, Ladani RB, Wang CH, Mouritz AP (2020) Improving the delamination resistance of fibre reinforced polymer composites using 3D woven metal Z-Filaments. Compos Sci Technol 198:108301. https://doi.org/10.1016/j.compscitech.2020.108301

    Article  CAS  Google Scholar 

  21. Kara Y, Molnár K (2022) Development of single-polypropylene composites interleaved with MWCNT-doped melt-blown fine fiber mats. Polym Compos 43:5208–5221. https://doi.org/10.1002/pc.26812

    Article  CAS  Google Scholar 

  22. Daelemans L, van der Heijden S, De Baere I et al (2015) Nanofibre bridging as a toughening mechanism in carbon/epoxy composite laminates interleaved with electrospun polyamide nanofibrous veils. Compos Sci Technol 117:244–256. https://doi.org/10.1016/j.compscitech.2015.06.021

    Article  CAS  Google Scholar 

  23. Shakil UA, Hassan SBA, Yahya MY, Nauman S (2020) Mechanical properties of electrospun nanofiber reinforced/interleaved epoxy matrix composites—a review. Polym Compos 41:2288–2315. https://doi.org/10.1002/pc.25539

    Article  CAS  Google Scholar 

  24. Sasidharan S, Anand A (2022) Interleaving in composites for high-performance structural applications. Ind Eng Chem Res 62:16–39

    Article  Google Scholar 

  25. Dzenis Y, Reneker D (2001) Delamination Resistant Composites Prepared by Small Diameter Fiber Reinforcement at Ply Interfaces

  26. Dzenis Y (2008) Structural nanocomposites. Science 319:419–420

    Article  CAS  PubMed  Google Scholar 

  27. Liu L, Huang Z-M, He CL, Han XJ (2006) Mechanical performance of laminated composites incorporated with nanofibrous membranes. Mater Sci Eng A 435–436:309–317. https://doi.org/10.1016/j.msea.2006.07.064

    Article  CAS  Google Scholar 

  28. Chen B, Cai H, Mao C et al (2022) Toughening and rapid self-healing for carbon fiber/epoxy composites based on electrospinning thermoplastic polyamide nanofiber. Polym Compos 43:3124–3135. https://doi.org/10.1002/pc.26605

    Article  CAS  Google Scholar 

  29. Neisiany RE, Khorasani SN, Lee JKY et al (2018) Interfacial toughening of carbon/epoxy composite by incorporating styrene acrylonitrile nanofibers. Theor Appl Fract Mech 95:242–247. https://doi.org/10.1016/j.tafmec.2018.03.006

    Article  CAS  Google Scholar 

  30. Neisiany RE, Khorasani SN, Naeimirad M, et al (2017) Improving Mechanical Properties of Carbon/Epoxy Composite by Incorporating Functionalized Electrospun Polyacrylonitrile Nanofibers. Macromol Mater Eng. 302:. https://doi.org/10.1002/mame.201600551

  31. Chen Q, Zhang L, Rahman A et al (2011) Hybrid multi-scale epoxy composite made of conventional carbon fiber fabrics with interlaminar regions containing electrospun carbon nanofiber mats. Compos Part Appl Sci Manuf 42:2036–2042. https://doi.org/10.1016/j.compositesa.2011.09.010

    Article  CAS  Google Scholar 

  32. Khan SU, Kim J-K (2012) Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers. Carbon 50:5265–5277. https://doi.org/10.1016/j.carbon.2012.07.011

    Article  CAS  Google Scholar 

  33. Yang X, Chen Y, Zhang C et al (2023) Electrospun carbon nanofibers and their reinforced composites: preparation, modification, applications, and perspectives. Compos Part B Eng 249:110386. https://doi.org/10.1016/j.compositesb.2022.110386

    Article  CAS  Google Scholar 

  34. Khayyam H, Jazar RN, Nunna S et al (2020) PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: experimental and mathematical modelling. Prog Mater Sci 107:100575. https://doi.org/10.1016/j.pmatsci.2019.100575

    Article  CAS  Google Scholar 

  35. Arshad SN, Naraghi M, Chasiotis I (2011) Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49:1710–1719. https://doi.org/10.1016/j.carbon.2010.12.056

    Article  CAS  Google Scholar 

  36. Qin F, Jiang W, Ni G et al (2019) From coal-heavy oil co-refining residue to asphaltene-based functional carbon materials. ACS Sustain Chem Eng 7:4523–4531. https://doi.org/10.1021/acssuschemeng.9b00003

    Article  CAS  Google Scholar 

  37. Zuo P, Leistenschneider D, Kim Y et al (2021) The effect of thermal pretreatment temperature on the diameters and mechanical properties of asphaltene-derived carbon fibers. J Mater Sci 56:14964–14977. https://doi.org/10.1007/s10853-021-06249-7

    Article  CAS  Google Scholar 

  38. Abedi Z, Leistenschneider D, Chen W, Ivey DG (2020) Superior performance of electrochemical double layer supercapacitor made with asphaltene derived activated carbon fibers. Energy Technol 8:2000588. https://doi.org/10.1002/ente.202000588

    Article  CAS  Google Scholar 

  39. Saad S, Zeraati AS, Roy S et al (2022) Transformation of petroleum asphaltenes to carbon fibers. Carbon 190:92–103. https://doi.org/10.1016/j.carbon.2022.01.011

    Article  CAS  Google Scholar 

  40. Bisheh H, Abdin Y (2023) Carbon fibers: from PAN to asphaltene Precursors. A State-of-Art Review C 9:19

    CAS  Google Scholar 

  41. Baritto M, Oni A, Kumar A (2023) The development of a techno-economic model for the assessment of asphaltene-based carbon fiber production. J Clean Prod 428:139489

    Article  CAS  Google Scholar 

  42. Baritto M, Oni A, Kumar A (2023) Estimation of life cycle greenhouse gas emissions of asphaltene-based carbon fibers derived from oil sands bitumen. Sustain Mater Technol 36:e00627

    CAS  Google Scholar 

  43. Al Bari MA, Nabil SK, Saad S et al (2023) Economic and environmental assessment of asphaltene-derived carbon fiber production. Green Chem 25:6446–6458

    Article  Google Scholar 

  44. Hussain A, Bahi A, Ko F, Abdin Y (2023) Development of low-cost electrospun carbon nanofibers using asphaltene precursor. Adv Nat Sci Nanosci Nanotechnol 14:025012. https://doi.org/10.1088/2043-6262/acd6e7

    Article  Google Scholar 

  45. De Crisci AG, Gieleciak R, Mobarok MH et al (2023) Producing asphaltene fibres from bitumen-derived asphaltenes for carbon fibre development: Part one–Electrospinning. Can J Chem Eng 101:2633–2645. https://doi.org/10.1002/cjce.24683

    Article  CAS  Google Scholar 

  46. Alberta Innovates Carbon Fiber Grand Challenge Asphaltene Sample Bank Sample S2 Analytical Properties, Innotech Alberta

  47. Daelemans L, Van Paepegem W, De Clerck K (2020) Chapter 11 - Effect of interleaved polymer nanofibers on the properties of glass and carbon fiber composites. In: Han B, Sharma S, Nguyen TA et al (eds) Fiber-Reinforced Nanocomposites: fundamentals and Applications. Elsevier, Amsterdam, pp 235–260

    Chapter  Google Scholar 

  48. Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates

  49. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials

  50. Qi Y, Jiang D, Ju S et al (2019) Determining the interphase thickness and properties in carbon fiber reinforced fast and conventional curing epoxy matrix composites using peak force atomic force microscopy. Compos Sci Technol 184:107877. https://doi.org/10.1016/j.compscitech.2019.107877

    Article  CAS  Google Scholar 

  51. Naji A, Krause B, Pötschke P, Ameli A (2019) Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications. Polym Compos 40:3189–3198. https://doi.org/10.1002/pc.25169

    Article  CAS  Google Scholar 

  52. Guadagno L, Raimondo M, Vietri U et al (2015) Effective formulation and processing of nanofilled carbon fiber reinforced composites. RSC Adv 5:6033–6042. https://doi.org/10.1039/C4RA12156B

    Article  CAS  Google Scholar 

  53. Maccaferri E, Mazzocchetti L, Benelli T et al (2022) Self-assembled NBR/Nomex nanofibers as lightweight rubbery nonwovens for hindering delamination in epoxy CFRPs. ACS Appl Mater Interfaces 14:1885–1899. https://doi.org/10.1021/acsami.1c17643

    Article  CAS  PubMed  Google Scholar 

  54. Chacón-Patiño ML, Neumann A, Rüger CP et al (2023) Chemistry and properties of carbon fiber feedstocks from bitumen asphaltenes. Energy Fuels 37:5341–5360. https://doi.org/10.1021/acs.energyfuels.2c04274

    Article  CAS  Google Scholar 

  55. Wu M, Wang Q, Li K et al (2012) Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers. Polym Degrad Stab 97:1511–1519. https://doi.org/10.1016/j.polymdegradstab.2012.05.001

    Article  CAS  Google Scholar 

  56. Rahaman MSA, Ismail AF, Mustafa A (2007) A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 92:1421–1432. https://doi.org/10.1016/j.polymdegradstab.2007.03.023

    Article  CAS  Google Scholar 

  57. Coleman MM, Petcavich RJ (1978) Fourier transform infrared studies on the thermal degradation of polyacrylonitrile. J Polym Sci Polym Phys Ed 16:821–832. https://doi.org/10.1002/pol.1978.180160507

    Article  CAS  Google Scholar 

  58. Henrici-Olivé G, Olivé S (1983) The chemistry of carbon fiber formation from polyacrylonitrile. Industrial Developments. Springer, Berlin, Heidelberg, pp 1–60

    Google Scholar 

  59. Cipriani E, Zanetti M, Bracco P et al (2016) Crosslinking and carbonization processes in PAN films and nanofibers. Polym Degrad Stab 123:178–188. https://doi.org/10.1016/j.polymdegradstab.2015.11.008

    Article  CAS  Google Scholar 

  60. Lin L-T (2017) Structure and properties of lignin-based composite carbon nanofibres. University of British Columbia

  61. Ko FK, Wan Y (2014) Introduction to nanofiber materials. Cambridge University Press

    Book  Google Scholar 

  62. Chang P, Mouritz AP, Cox BN (2007) Flexural properties of z-pinned laminates. Compos Part Appl Sci Manuf 38:244–251. https://doi.org/10.1016/j.compositesa.2006.05.004

    Article  CAS  Google Scholar 

  63. Zhang J, Lin T, Wang X (2010) Electrospun nanofibre toughened carbon/epoxy composites: effects of polyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness. Compos Sci Technol 70:1660–1666. https://doi.org/10.1016/j.compscitech.2010.06.019

    Article  CAS  Google Scholar 

  64. Niu Y-F, Yang Y, Gao S, Yao J-W (2016) Mechanical mapping of the interphase in carbon fiber reinforced poly (ether-ether-ketone) composites using peak force atomic force microscopy: interphase shrinkage under coupled ultraviolet and hydro-thermal exposure. Polym Test 55:257–260

    Article  CAS  Google Scholar 

  65. Wang Y, Liu X, Chen L et al (2022) Simultaneously improve the mode II interlaminar fracture toughness, flexural properties, and impact strength of CFRP composites with short aramid fiber interlaminar toughening. Polym Compos 43:8437–8442. https://doi.org/10.1002/pc.27014

    Article  CAS  Google Scholar 

  66. Mahato B, Lomov SV, Shiverskii A et al (2023) A Review of electrospun nanofiber interleaves for interlaminar toughening of composite laminates. Polymers. https://doi.org/10.3390/polym15061380

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhao Q, Zhang K, Zhu S et al (2019) Review on the electrical resistance/conductivity of carbon fiber reinforced polymer. Appl Sci 9:2390

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Alberta Innovates and the Clean Resource Innovation Network (CRIN) for co-funding this project. The funding of infrastructure and equipment provided by the Canada Foundation for Innovation (CFI) is greatly appreciated. The authors would like to thank the nanofab lab at the University of Alberta for the use of the XPS equipment.

Funding

Alberta Innovates,Clean Resource Innovation Network

Author information

Authors and Affiliations

Authors

Contributions

Atif Hussain and Parya Keyvani were involved in investigation, methodology, visualization, formal analysis, and writing—original draft. Rachel Cummings was performed investigation, methodology, and visualization. Muzaffer Karaaslan and Addie Bahi were done investigation, methodology, and formal analysis. Scott Renneckar and Frank Ko did resources, funding acquisition, and writing—review and editing. Yasmine Abdin was contributed conceptualization, formal analysis, supervision, project administration, resources, funding acquisition, and writing – review and editing.

Corresponding author

Correspondence to Yasmine Abdin.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not available

Supplementary information

Supplementary material includes elemental composition of the asphaltene sample used in the study, SEM images of the produced nanomats, differential scanning calorimetry (DSC) testing of the nanomats, additional images of the carbonized nanomats and composite samples, and thermogravimetric analysis (TGA) of the produced hybrid composites.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3017 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Keyvani, P., Cummings, R. et al. Multifunctional hybrid composites from novel asphaltene-based carbon nanofiber mats and woven carbon fiber. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-10217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-10217-2

Navigation