Skip to main content
Log in

Multifunctional hydrogel dressing promotes wound healing by reprogramming the infection-related wound microenvironment

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of biocompatible materials, which both facilitate wound healing and possess antimicrobial properties, continues to present a formidable challenge. However, recent research has increasingly acknowledged the pivotal role that macrophages play in the repair of wounds associated with infection. In this study, a novel sequential immunomodulation strategy is proposed, which involves the preparation of hydrogels encapsulating vancomycin-loaded lithium (Li) mesoporous bioactive glass (Li-MBG) within methacrylate silk fibroin (SilMA) hydrogel. The fabricated SLM@V hydrogel exhibited enhanced capabilities for vancomycin and Li ion release, adjustable mechanical properties, and a porous network structure. Cytocompatibility assessments revealed that SLM@V hydrogels exhibit favorable compatibility in vitro. Importantly, SLM@V hydrogels demonstrate significant bactericidal and anti-inflammatory properties in vitro. In a murine model of skin defects, SLM@V hydrogels facilitated the complete healing of infected wounds. Furthermore, histological and immunohistochemical analyses substantiated the effectiveness of SLM@V hydrogels in enhancing granulation tissue formation, promoting collagen deposition, and mitigating inflammation and angiogenesis. Consequently, the composite hydrogel synthesized in this research has the potential to expedite the healing process of infection-related wounds in a secure and efficient manner. This innovative composite hydrogel material offers a novel strategy to tackle the complexities associated with infection-induced wound healing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Xiao W, Wan X, Shi L, Ye M, Zhang Y, Wang S (2024) A viscous-biofluid self-pumping organohydrogel dressing to accelerate diabetic wound healing. Adv Mater 36(25):e2401539

    Article  PubMed  Google Scholar 

  2. Huo S, Liu S, Liu Q, Xie E, Miao L, Meng X, Xu Z, Zhou C, Liu X, Xu G (2023) Copper-zinc-doped bilayer bioactive glasses loaded hydrogel with spatiotemporal immunomodulation supports mrsa-infected wound healing. Adv Sci (Weinh) 11(5):e2302674

    Article  PubMed  Google Scholar 

  3. Wu B, Yang J, Zu Y, Chi J, Shi K (2022) Aligned electrospun fiber film loaded with multi-enzyme mimetic iridium nanozymes for wound healing. J Nanobiotechnology 20(1):478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bao X, Huo S, Wang Z, Yang S, Dou L, Liu Y, Huang J, Cai C, Fang B, Xu G (2024) Multifunctional biomimetic hydrogel dressing provides anti-infection treatment and improves immunotherapy by reprogramming the infection-related wound microenvironment. J Nanobiotechnology 22(1):80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peng Y, Guo Y, Ge X, Gong Y, Wang Y, Ou Z, Luo G, Zhan R, Zhang Y (2024) Construction of programmed time-released multifunctional hydrogel with antibacterial and anti-inflammatory properties for impaired wound healing. J Nanobiotechnology 22(1):126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li A, Ma B, Hua S, Ping R, Ding L, Tian B, Zhang X (2024) Chitosan-based injectable hydrogel with multifunction for wound healing: a critical review. Carbohydr Polym 333:121952

    Article  CAS  PubMed  Google Scholar 

  7. Zhang W, Lu H, Zhang W, Hu J, Zeng Y, Hu H, Shi L, Xia J, Xu F (2024) Inflammatory microenvironment-responsive hydrogels enclosed with quorum sensing inhibitor for treating post-traumatic osteomyelitis. Adv Sci (Weinh) 11(20):e2307969

    Article  PubMed  Google Scholar 

  8. Niknafs B, Meskaraf-Asadabadi M, Hamdi K, Ghanbari E (2024) Incorporating bioactive glass nanoparticles in silk fibroin/bacterial nanocellulose composite scaffolds improves their biological and osteogenic properties for bone tissue engineering applications. Int J Biol Macromol 266:131167

    Article  CAS  PubMed  Google Scholar 

  9. Lee VH (2011) Advanced Drug Delivery Reviews: advancing science, improving therapy. Adv Drug Deliv Rev 63(1–2):1–2

    CAS  PubMed  Google Scholar 

  10. Applegate MB, Partlow BP, Coburn J, Marelli B, Pirie C, Pineda R, Kaplan DL, Omenetto FG (2016) Photocrosslinking of silk fibroin using riboflavin for ocular prostheses. Adv Mater 28(12):2417–2420

    Article  CAS  PubMed  Google Scholar 

  11. Hasturk O, Jordan KE, Choi J, Kaplan DL (2020) Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation. Biomaterials 232:119720

    Article  CAS  PubMed  Google Scholar 

  12. Hong H, Seo YB, Kim DY, Lee JS, Lee YJ, Lee H, Ajiteru O, Sultan MT, Lee OJ, Kim SH, Park CH (2020) Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials 232:119679

    Article  CAS  PubMed  Google Scholar 

  13. Bernardes BG, Veiga A, Barros J, García-González CA, Oliveira AL (2024) Sustainable silk based particulate systems for the controlled release of pharmaceuticals and bioactive agents in wound healing and skin regeneration. Int J Mol Sci 25(6):3133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang D, Zhao W, Zhang S, Liu Y, Teng J, Ma Y, Huang R, Wei H, Chen H, Zhang J, Chen J (2024) Dual self-assembly of puerarin and silk fibroin into supramolecular nanofibrillar hydrogel for infected wound treatment. Adv Healthcare Mater 13(19):2400071

    Article  CAS  Google Scholar 

  15. Miao C, Zhang Y, Liu G, Yang J, Yu K, Lv J, Liu R, Yao Z, Niu Y, Wang X, Wang Q (2024) Multi-step strategies for synergistic treatment of urinary tract infections based on D-xylose-decorated antimicrobial peptide carbon dots. Biomaterials 308:122547

    Article  CAS  PubMed  Google Scholar 

  16. Chen SY, Chen YL, Li PC, Cheng TS, Chu YS, Shen YS, Chen HT, Tsai WN, Huang CL, Sieber M, Yeh YC, Liu HS, Chiang CL, Chang CH, Lee AS, Tseng YH, Lee LJ, Liao HJ, Yip HK, Huang CF (2024) Engineered extracellular vesicles carrying let-7a-5p for alleviating inflammation in acute lung injury. J Biomed Sci 31(1):30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li C, Clauson R, Bugada LF, Ke F, He B, Yu Z, Chen H, Jacobovitz B, Hu H, Chuikov P, Hill BD, Rizvi SM, Song Y, Sun K, Axenov P, Huynh D, Wang X, Garmire L, Lei YL, Grigorova I, Wen F, Cascalho M, Gao W, Sun D (2024) Antigen-clustered nanovaccine achieves long-term tumor remission by promoting B/CD 4 T cell crosstalk. ACS Nano 18(13):9584–9604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, Zhao X, Zhou X, Dai J, Hu X, Piao Y, Zu G, Xiao J, Shi K, Liu Y, Li Y, Shi L (2024) A supramolecular hydrogel dressing with antibacterial, immunoregulation, and pro-regeneration ability for biofilm-associated wound healing. J Control Release 368:740–755

    Article  CAS  PubMed  Google Scholar 

  19. Huo S, Lyu Z, Su X, Wang F, Liu J, Liu S, Liu X, Bao X, Zhang J, Zheng K, Xu G (2023) Formation of a novel Cu-containing bioactive glass nano-topography coating with strong bactericidal capability and bone regeneration. Compos B Eng 253:110521

    Article  CAS  Google Scholar 

  20. Huo S, Wang F, Lyu Z, Hong Q, B.e. Nie, J. Wei, Y. Wang, J. Zhang, B. Yue, (2021) Dual-functional polyetheretherketone surface modification for regulating immunity and bone metabolism. Chem Eng J 426:130806

    Article  CAS  Google Scholar 

  21. Yang SY, Hu Y, Zhao R, Zhou YN, Zhuang Y, Zhu Y, Ge XL, Lu TW, Lin KL, Xu YJ (2024) Quercetin-loaded mesoporous nano-delivery system remodels osteoimmune microenvironment to regenerate alveolar bone in periodontitis via the miR-21a-5p/PDCD4/NF-κB pathway. J Nanobiotechnology 22(1):94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng X, Luo H, Li J, Yang Z, Zhuan X, Li X, Chen Y, Huo S, Zhou X (2024) Zinc-doped bioactive glass-functionalized polyetheretherketone to enhance the biological response in bone regeneration. J Biomed Mater Res A 112(9):1565–1577

    Article  CAS  PubMed  Google Scholar 

  23. Guo G, Zhang H, Shen H, Zhu C, He R, Tang J, Wang Y, Jiang X, Wang J, Bu W, Zhang X (2020) Space-selective chemodynamic therapy of cufe5o8 nanocubes for implant-related infections. ACS Nano 14(10):13391–13405

    Article  CAS  PubMed  Google Scholar 

  24. Wu Z, Bai J, Ge G, Wang T, Feng S, Ma Q, Liang X, Li W, Zhang W, Xu Y, Guo K, Cui W, Zha G, Geng D (2022) Regulating macrophage polarization in high glucose microenvironment using lithium-modified bioglass-hydrogel for diabetic bone regeneration. Adv Healthcare Mater 11(13):2200298

    Article  CAS  Google Scholar 

  25. Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ, Seo YB, Sultan MT, Lee OJ, Lee JS, Yoon S-I (2018) Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun 9(1):1620

    Article  PubMed  PubMed Central  Google Scholar 

  26. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21(32–33):3307–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rajput M, Mondal P, Yadav P, Chatterjee K (2022) Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin. Int J Biol Macromol 202:644–656

    Article  CAS  PubMed  Google Scholar 

  28. Dong Q, Zu D, Kong L, Chen S, Yao J, Lin J, Lu L, Wu B, Fang B (2022) Construction of antibacterial nano-silver embedded bioactive hydrogel to repair infectious skin defects. Biomater Res 26(1):36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mârza SM, Dăescu AM, Purdoiu RC, Dragomir M, Tătaru M, Melega I, Nagy AL, Gal A, Tăbăran F, Bogdan S, Moldovan M, Pall E, Munteanu C, Magyari K, Papuc I (2024) Healing of skin wounds in rats using creams based on symphytum officinale extract. Int J Mol Sci 25(6):3099

    Article  PubMed  PubMed Central  Google Scholar 

  30. He J, Zhou S, Wang J, Sun B, Ni D, Wu J, Peng X (2024) Anti-inflammatory and anti-oxidative electrospun nanofiber membrane promotes diabetic wound healing via macrophage modulation. J Nanobiotechnology 22(1):116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Savitri C, Ha SS, Kwon JW, Kim SH, Kim YM, Park HM, Kwon H, Ji MJ, Park K (2024) Human fibroblast-derived matrix hydrogel accelerates regenerative wound remodeling through the interactions with macrophages. Adv Sci (Weinh) 11(8):e2305852

    Article  PubMed  Google Scholar 

  32. Byun H, Han Y, Kim E, Jun I, Lee J, Jeong H, Huh SJ, Joo J, Shin SR, Shin H (2024) Cell-homing and immunomodulatory composite hydrogels for effective wound healing with neovascularization. Bioact Mater 36:185–202

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu B, Pan W, Luo S, Luo X, Zhao Y, Xiu Q, Zhong M, Wang Z, Liao T, Li N, Liu C, Nie C, Yi G, Lin S, Zou M, Li B, Zheng L (2024) Turmeric-Derived Nanoparticles Functionalized Aerogel Regulates Multicellular Networks to Promote Diabetic Wound Healing. Adv Sci (Weinh) 11(18):e2307630

    Article  PubMed  Google Scholar 

  34. Keskin-Erdogan Z, Mandakhbayar N, Jin GS, Li YM, Chau DYS, Day RM, Kim HW, J.C. (2024) Knowles, Lithium-loaded GelMA-Phosphate glass fibre constructs: Implications for astrocyte response. J Biomed Mater Res A 112(7):1070–1082

    Article  CAS  PubMed  Google Scholar 

  35. Bhat K, Schlotterose L, Hanke L, Helmholz H, Quandt E, Hattermann K, Willumeit Romer R (2024) Magnesium lithium thin films for neurological applications an in vitro investigation of glial cytocompatibility and neuroinflammatory response. Acta Biomater 178:307–319

    Article  CAS  PubMed  Google Scholar 

  36. Su X-J, Liu S, Huo S-C, Wang F, Song Q-X, Shen H-X, Huang S-H, Zhu C, Wang K (2024) Polyetheretherketone surface modification by lithium-doped bioglass nanospheres to regulate bone immunity and promote osseointegration. Mater Des 238:112646

    Article  CAS  Google Scholar 

  37. Qian Y, Zheng Y, Jin J, Wu X, Xu K, Dai M, Niu Q, Zheng H, He X, Shen J (2022) Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold. Adv Mater 34(29):e2200521

    Article  PubMed  Google Scholar 

  38. Chen J, Liu Y, Cheng G, Guo J, Du S, Qiu J, Wang C, Li C, Yang X, Chen T, Chen Z (2022) Tailored hydrogel delivering niobium carbide boosts ros-scavenging and antimicrobial activities for diabetic wound healing. Small 18(27):2201300

    Article  CAS  Google Scholar 

  39. Kharaziha M, Baidya A, Annabi N (2021) Rational design of immunomodulatory hydrogels for chronic wound healing. Adv Mater 33(39):2100176

    Article  CAS  Google Scholar 

  40. Wang M, Wang C, Chen M, Xi Y, Cheng W, Mao C, Xu T, Zhang X, Lin C, Gao W, Guo Y, Lei B (2019) Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release. ACS Nano 13(9):10279–10293

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Subha Narayan Rath.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 98 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, Y., Zhang, S., Wu, M. et al. Multifunctional hydrogel dressing promotes wound healing by reprogramming the infection-related wound microenvironment. J Mater Sci 59, 16660–16677 (2024). https://doi.org/10.1007/s10853-024-10182-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-10182-w

Navigation