Skip to main content
Log in

Structural, mechanical, electrical, and biocompatibility investigation of nanostructured hydroxyapatite coating on alumina by radio frequency magnetron sputtering

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The increasing need for advanced orthopaedic implants necessitates improved materials that offer better biocompatibility and mechanical properties, addressing issues such as implant failure due to poor integration and corrosion. A 3″ diameter, 5-mm-thick pellet of hydroxyapatite (HAP) was prepared and was used as the cathode for the radio frequency (RF) magnetron sputtering system. One hundred nm nanocoating on alumina substrates (HAP/Al2O3) was done using RF magnetron sputtering. The hexagonal (HCP) HAP structure was chosen to deposit on hexagonal α-alumina for better growth and adhesion of the HAP film. The microstructure was analysed using field emission scanning electron microscopy, atomic force microscopy, and glancing angle X-ray diffraction. Elemental analysis was carried out using energy-dispersive X-ray spectroscopy. Mechanical and film adhesion properties were studied using Vicker’s hardness and scratch test, respectively. The hardness of the coated sample increases 2.5 times. The optical contact angle increased from 82.88° for pure alumina to 113.53° for HAP/Al2O3 due to the decreased roughness, indicating enhanced hydrophobicity. Pore size, area, and volume were studied using the Brunauer–Emmett–Teller technique. Corrosion resistance in Ringer’s solution and dielectric properties were investigated. The antimicrobial investigation was carried out against two different bacteria, namely gram-negative Escherichia coli (E. coli) and gram-positive Staphylococcus aureus (S. aureus). Improved adhesion, hardness, corrosion resistance, and biocompatibility properties are correlated with the surface and structural properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

It will be made available on request.

References

  1. Diallo-Garcia S et al (2011) Influence of magnesium substitution on the basic properties of hydroxyapatites. J Phys Chem C 115(49):24317–24327. https://doi.org/10.1021/jp209316k

    Article  CAS  Google Scholar 

  2. Kumar R, Shikha D, Sinha SK (2024) DPPH radical scavenging assay: a tool for evaluating antioxidant activity in 3 % cobalt – doped hydroxyapatite for orthopaedic implants. Ceram Int 50(8):13967–13973. https://doi.org/10.1016/j.ceramint.2024.01.314

    Article  CAS  Google Scholar 

  3. Aldalbahi A, El-Naggar ME, Ahmed MK, Periyasami G, Rahaman M, Menazea AA (2020) Core–shell Au@Se nanoparticles embedded in cellulose acetate/polyvinylidene fluoride scaffold for wound healing. J Market Res 9(6):15045–15056. https://doi.org/10.1016/j.jmrt.2020.10.079

    Article  CAS  Google Scholar 

  4. Abd El-Kader MFH, Elabbasy MT, Adeboye AA, Zeariya MGM, Menazea AA (2021) Morphological, structural and antibacterial behavior of eco-friendly of ZnO/TiO2 nanocomposite synthesized via Hibiscus rosa-sinensis extract. J Mater Res Technol 15:2213–2220. https://doi.org/10.1016/j.jmrt.2021.09.048

    Article  CAS  Google Scholar 

  5. Elabbasy MT, Abd El-Kader MFH, Ismail AM, Menazea AA (2021) Regulating the function of bismuth(III) oxide nanoparticles scattered in chitosan/poly (vinyl pyrrolidone) by laser ablation on electrical conductivity characterization and antimicrobial activity. J Mater Res Technol 10:1348–1354. https://doi.org/10.1016/j.jmrt.2020.12.109

    Article  CAS  Google Scholar 

  6. Ahmed Ismail K et al (2022) Perspectives on composite films of chitosan-based natural products (ginger, curcumin, and cinnamon) as biomaterials for wound dressing. Arab J Chem 15(4):103716. https://doi.org/10.1016/j.arabjc.2022.103716

    Article  CAS  Google Scholar 

  7. Ali H, Ismail AM, Menazea AA (2022) Multifunctional Ag/ZnO/chitosan ternary bio-nanocomposites synthesized via laser ablation with enhanced optical, antibacterial, and catalytic characteristics. J Water Process Eng 49:102940. https://doi.org/10.1016/j.jwpe.2022.102940

    Article  Google Scholar 

  8. Kattimani VS, Kondaka S, Lingamaneni KP (2016) Hydroxyapatite-past, present, and future in bone regeneration. Bone Tissue Regen Insights 7:BTRI.S36138. https://doi.org/10.4137/BTRI.S36138

    Article  Google Scholar 

  9. Kolmas J, Groszyk E, Kwiatkowska-Różycka D (2014) Substituted hydroxyapatites with antibacterial properties. Biomed Res Int 2014:1–15. https://doi.org/10.1155/2014/178123

    Article  CAS  Google Scholar 

  10. Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L (2015) Fabrication, properties and applications of dense hydroxyapatite: a review. J Funct Biomater 6(4):1099–1140. https://doi.org/10.3390/jfb6041099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Havlik RJ (2002) Hydroxyapatite. Plast Reconstr Surg 110(4):1176–1179. https://doi.org/10.1097/01.PRS.0000020998.55126.10

    Article  PubMed  Google Scholar 

  12. Bezzi G, Celotti G, Landi E, La Torretta TMG, Sopyan I, Tampieri A (2003) A novel sol–gel technique for hydroxyapatite preparation. Mater Chem Phys 78(3):816–824. https://doi.org/10.1016/S0254-0584(02)00392-9

    Article  CAS  Google Scholar 

  13. Brown RP, Fowler BA, Fustinoni S, Nordberg M (2015) Toxicity of metals released from implanted medical devices. Handbook on the toxicology of metals. Elsevier, Amsterdam, pp 113–122. https://doi.org/10.1016/B978-0-444-59453-2.00005-6

    Chapter  Google Scholar 

  14. Shikha D, Shahid Md, Sinha SK (2020) Improvement in adhesion of HAP deposited on alumina after Ar+ ions implantation and its physiochemical properties. Surf Interfaces 19:100485. https://doi.org/10.1016/j.surfin.2020.100485

    Article  CAS  Google Scholar 

  15. Vignesh Raj S, Rajkumar M, MeenakshiSundaram N, Kandaswamy A (2018) Synthesis and characterization of hydroxyapatite/alumina ceramic nanocomposites for biomedical applications. Bull Mater Sci 41(4):93. https://doi.org/10.1007/s12034-018-1612-4

    Article  CAS  Google Scholar 

  16. Kelly PJ, Arnell RD (2000) Magnetron sputtering: a review of recent developments and applications. Vacuum 56(3):159–172. https://doi.org/10.1016/S0042-207X(99)00189-X

    Article  CAS  Google Scholar 

  17. Musil J, Baroch P, Vlček J, Nam KH, Han JG (2005) Reactive magnetron sputtering of thin films: present status and trends. Thin Solid Films 475(1–2):208–218. https://doi.org/10.1016/j.tsf.2004.07.041

    Article  CAS  Google Scholar 

  18. Nur-E-Alam M, Vasiliev M, Kotov V, Alameh K (2014) Recent developments in magneto-optic garnet-type thin-film materials synthesis. Procedia Eng 76:61–73. https://doi.org/10.1016/j.proeng.2013.09.248

    Article  CAS  Google Scholar 

  19. Alam MN-E, Vasiliev M, Alameh K (2014) Bi_3Fe_5O_12: Dy_2O_3 composite thin film materials for magneto-photonics and magneto-plasmonics. Opt Mater Express 4(9):1866. https://doi.org/10.1364/OME.4.001866

    Article  CAS  Google Scholar 

  20. Nur-E-Alam M, Vasiliev M, Alameh K (2009) Nano-structured magnetic photonic crystals for magneto-optic polarization controllers at the communication-band wavelengths. Opt Quantum Electron 41(9):661–669. https://doi.org/10.1007/s11082-010-9374-2

    Article  CAS  Google Scholar 

  21. Asgary S et al (2021) Magnetron sputtering technique for analyzing the influence of RF sputtering power on microstructural surface morphology of aluminum thin films deposited on SiO2/Si substrates. Appl Phys A 127(10):752. https://doi.org/10.1007/s00339-021-04892-0

    Article  CAS  Google Scholar 

  22. Mahanty A, Kumar R, Shikha D, Sinha SK (2023) Synthesis and characterization of new biomaterial ZnMg doped HAp for orthopaedic implant. Ceram Int 49(17):28965–28973. https://doi.org/10.1016/j.ceramint.2023.06.165

    Article  CAS  Google Scholar 

  23. Suresh Kumar C, Dhanaraj K, Vimalathithan RM, Ilaiyaraja P, Suresh G (2020) Hydroxyapatite for bone related applications derived from sea shell waste by simpleprecipitation method. J Asian Ceram Soc 8(2):416–429. https://doi.org/10.1080/21870764.2020.1749373

    Article  Google Scholar 

  24. Shi YS (2003) Electrical resistivity of RF sputtered Pd films. Phys Lett A 319(5–6):555–559. https://doi.org/10.1016/j.physleta.2003.11.002

    Article  CAS  Google Scholar 

  25. Le Huec JC, Schaeverbeke T, Clement D, Faber J, Le Rebeller A (1995) Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials 16(2):113–118. https://doi.org/10.1016/0142-9612(95)98272-G

    Article  PubMed  Google Scholar 

  26. Scalera F, Gervaso F, Sanosh KP, Sannino A, Licciulli A (2013) Influence of the calcination temperature on morphological and mechanical properties of highly porous hydroxyapatite scaffolds. Ceram Int 39(5):4839–4846. https://doi.org/10.1016/j.ceramint.2012.11.076

    Article  CAS  Google Scholar 

  27. de Lima MG, Leal E, de Agnolon Pallone EMJ, Kiminami RHGA, de Costa ACFM (2018) Microstructural and mechanical properties of Al2O3/HAp composites for use as bone substitute material. Mater Sci Forum 912:153–158. https://doi.org/10.4028/www.scientific.net/MSF.912.153

    Article  Google Scholar 

  28. Ahmad FN, Rashid N, Zuhailawati H (2019) Mechanical and corrosion properties of Mg-Zn/HAP/Al2O3 hybrid composite. J Phys Conf Ser 1349(1):012136. https://doi.org/10.1088/1742-6596/1349/1/012136

    Article  CAS  Google Scholar 

  29. Nazirah R, Zuhailawati H (2018) The effect of alumina and hydroxyapatite content on morphology and mechanical properties of Mg hybrid composite for biodegradable implants materials. J Phys Conf Ser 1082:012078. https://doi.org/10.1088/1742-6596/1082/1/012078

    Article  CAS  Google Scholar 

  30. Ibrahim SW, Rafeeq AK, Ahmedhamdi MS (2021) Histomorphometric assessment of implant coated with mixture of nano-alumina and fluorapatite in rabbits. Saudi Dent J 33(8):1142–1148. https://doi.org/10.1016/j.sdentj.2021.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  31. Borruto A, Crivellone G, Marani F (1998) Influence of surface wettability on friction and wear tests. Wear 222(1):57–65. https://doi.org/10.1016/S0043-1648(98)00256-7

    Article  CAS  Google Scholar 

  32. Menzies KL, Jones L (2010) The impact of contact angle on the biocompatibility of biomaterials. Optom Vis Sci 87(6):387–399. https://doi.org/10.1097/OPX.0b013e3181da863e

    Article  PubMed  Google Scholar 

  33. Baier RE (1972) The role of surface energy in thrombogenesis. Bull NY Acad Med 48:257–272

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank everyone at the Central Instrumentation Facility (CIF) at BIT Mesra, Ranchi, for supplying the data.

Funding

The authors thank the Science and Engineering Research Board (File No— CRG/2021/002818), DST, Government of India, for providing the funds to carry out this research.

Author information

Authors and Affiliations

Authors

Contributions

All contributors have made essential contributions to the article.

Corresponding author

Correspondence to Deep Shikha.

Ethics declarations

Conflict of interest

The authors state that they do not have any known competing financial interests or personal ties that could appear to have influenced the work disclosed in this study.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Shikha, D. & Sinha, S.K. Structural, mechanical, electrical, and biocompatibility investigation of nanostructured hydroxyapatite coating on alumina by radio frequency magnetron sputtering. J Mater Sci 59, 15764–15779 (2024). https://doi.org/10.1007/s10853-024-10132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-10132-6

Navigation