Skip to main content

Advertisement

Log in

Study on explosive welding A7075 and Ti–6Al–4 V with aluminum or copper interlayer

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Direct explosion welding makes it challenging to weld high-strength metals. Interlayer explosive welding was utilized to join the high-strength, low-melting-point aluminum alloy A7075 with the high-strength titanium alloy Ti–6Al–4 V. This method overcomes the challenges of directly welding such metals and widens the range of weldable parameters, thus facilitating more favorable welding conditions. The study effectively demonstrated the interlayer explosive welding process for A7075 with Ti–6Al–4 V using aluminum and copper interlayers. Microstructure and chemical content analysis of the bonded interfaces were conducted through optical microscope, scanning electron microscope, electron backscatter diffraction, and X-ray energy spectroscopy. The investigations found that the upper interfaces were flat and straight in shape, but the lower interfaces were wavy. Interdiffusion of components and compound formation occurred at the welded interface. In addition, grain refining took place at the bonding interface. Vickers hardness was used to measure hardness variations at the welded interface, and the mechanical properties of the bonded interface were examined using tensile shear, bending, and microtensile tests. The results confirm the practicality of interlayer explosive welding in producing high-strength, low-melting-point composites of A7075 and Ti–6Al–4 V. Microstructure analysis and mechanical testing at the weld interfaces of A7075/A1060/Ti–6Al–4 V and A7075/Cu/Ti–6Al–4 V composite plates revealed excellent bonding quality. Notably, compared to A7075/A1060/Ti–6Al–4 V composite plate, A7075/Cu/Ti–6Al–4 V composite plate performs better in mechanical tests, with tensile bending strengths of 137 MPa and 1321 MPa, respectively. Thinner interfacial melting zones were evident in the microstructure of the composite plate with a copper interlayer at the 30 mm explosive thickness parameter, correlating with improved performance in the microtensile test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Liang H, Chen Y, Luo N, Wang J, Li X (2023) Experimental and numerical investigation on interface microstructure and phase constitution of radiation resistant Pb/316L stainless steel explosive welded composite plate. J Mater Res Technol 24:2562–2574. https://doi.org/10.1016/j.jmrt.2023.03.141

    Article  CAS  Google Scholar 

  2. Ning J, Zhang LJ, Xie MX, Yang HX, Yin XQ, Zhang JX (2017) Microstructure and property inhomogeneity investigations of bonded Zr/Ti/steel trimetallic sheet fabricated by explosive welding. J Alloy Compd 698:835–851. https://doi.org/10.1016/j.jallcom.2016.12.213

    Article  CAS  Google Scholar 

  3. Zhang T, Wang W, Zhang W (2019) Interfacial microstructure evolution and deformation mechanism in an explosively welded Al/Mg alloy plate. J Mater Sci 54:9155–9167. https://doi.org/10.1007/s10853-019-03529-1

    Article  CAS  Google Scholar 

  4. Yu C, He ZB, Lv Q, Yu JR, Xiao H (2021) Preparation of Ti/Al composite plates by differential temperature rolling with induction heating. Int J Adv Manuf Technol 117:383–394. https://doi.org/10.1007/s00170-021-07775-z

    Article  Google Scholar 

  5. Sokoluk M, Cao C, Pan S, Li X (2019) Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075. Nat Commun 98:10. https://doi.org/10.1038/s41467-018-07989-y

    Article  CAS  Google Scholar 

  6. Wang BF, Luo XZ, Wang B, Zhao ST, Xie FY (2015) Microstructure and its formation mechanism in the interface of Ti/NiCr explosive cladding bar. J Mater Eng Perform 24:1050–1058. https://doi.org/10.1007/s11665-014-1321-0

    Article  CAS  Google Scholar 

  7. Wang BF, Xie FY, Wang B, Luo XZ (2015) Microstructure and properties of the Ti/Al2O3/NiCr composites fabricated by explosive compaction/cladding. Mater Sci Eng C 50:324–331. https://doi.org/10.1016/j.msec.2015.02.023

    Article  CAS  Google Scholar 

  8. Sathish T, Tharmalingam S, Mohanavel V (2021) Weldability investigation and optimization of process variables for TIG-welded aluminium alloy (AA 8006). Adv Mater Sci Eng. https://doi.org/10.1155/2021/2816338

    Article  Google Scholar 

  9. Sun Z, Shi C, Wu X (2020) Comprehensive investigation of effect of the charge thickness and stand-off gap on interface characteristics of explosively welded TA2 and Q235B. Compos Interface 27:977–993. https://doi.org/10.1080/09276440.2020.1716578

    Article  CAS  Google Scholar 

  10. Kwiecien I, Bobrowski P, Janusz-Skuza M (2020) Microstructure of the interface zone after explosive welding and further annealing of A1050/Ni201 clads using various joining conditions. J Mater Sci 55:9163–9172. https://doi.org/10.1007/s10853-019-04317-7

    Article  CAS  Google Scholar 

  11. Altiparmak SC, Yardley VA, Shi Z (2021) Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing. J Light Met 4:246–261. https://doi.org/10.1016/j.ijlmm.2020.12.004

    Article  CAS  Google Scholar 

  12. Cui C, Hu B, Zhao L, Liu S (2011) Titanium alloy production technology, market prospects and industry development. Mater Design 32:1684–1691. https://doi.org/10.1016/j.matdes.2010.09.011

    Article  CAS  Google Scholar 

  13. Batool SA, Ahmad A, Wadood A, Mateen A, Hussain SW (2018) Development of lightweight aluminum-titanium alloys for aerospace applications. KEM 778:22–27. https://doi.org/10.4028/www.scientific.net/KEM.778.22

    Article  Google Scholar 

  14. Saravanan S, Raghukandan K (2013) Influence of interlayer in explosive cladding of dissimilar metals. Mater Manuf Process 28:589–594. https://doi.org/10.1080/10426914.2012.736665

    Article  CAS  Google Scholar 

  15. Yuan J, Shao F, Bai L, Zhang H, Xu Q, Gao L, Ma Q (2022) Investigation of the microstructure of TC1/1060/6061 explosive composites based on experiments and numerical simulations. Mater Res Express 9:046527. https://doi.org/10.1088/2053-1591/ac656d

    Article  CAS  Google Scholar 

  16. Bazarnik P, Adamczyk-Cieślak B, Gałka A (2016) Mechanical and microstructural characteristics of Ti6Al4V/AA2519 and Ti6Al4V/AA1050/AA2519 laminates manufactured by explosive welding. Mater Design 111:146–157. https://doi.org/10.1016/j.matdes.2016.08.088

    Article  CAS  Google Scholar 

  17. Mahmood Y, Dai K, Chen P, Zhou Q, Bhatti AA, Arab A (2019) Experimental and numerical study on microstructure and mechanical properties of Ti–6Al–4V/Al-1060 explosive welding. Metals 9:1189. https://doi.org/10.3390/met9111189

    Article  CAS  Google Scholar 

  18. Mahmood Y, Chen P, Bataev IA (2021) Experimental and numerical investigations of interface properties of Ti6Al4V/CP-Ti/Copper composite plate prepared by explosive welding. Def Technol 17:1592–1601. https://doi.org/10.1016/j.dt.2020.09.003

    Article  Google Scholar 

  19. GB/T6396-2008 (2008) Clad steel plates-mechanical and technological test, China National Standardization Management Committee

  20. GB14452-93 (1996) Compilation of National Standards for Testing Methods for Mechanical and Technological Properties of Metals. Standards Press of China, Beijing, pp 171–189

    Google Scholar 

  21. Maćkowiak P, Płaczek D, Kotyk M (2018) Determination of design mechanical properties of adhesives in a tensile and compression test. In: IOP Conference Series: Mat Sci Eng, vol 393, no 1. IOP Publishing. p 012027. https://doi.org/10.1088/1757-899X/393/1/012027

  22. Sundaram KS, Bharath AG, Aravind B (2022) Influence of target dynamics and number of impacts on ballistic performance of 6061–T6 and 7075–T6 aluminum alloy targets. Mech Based Des Struc 50:993–1011. https://doi.org/10.1080/15397734.2020.1738245

    Article  Google Scholar 

  23. Alaie A, Hashemi R, Kazemi F (2021) Investigation of forming limit diagram and mechanical properties of the bimetallic Al/Cu composite sheet at different temperatures which fabricated by explosive welding. P I Mech Eng B-J Eng 235:73–84. https://doi.org/10.1177/0954405420949227

    Article  CAS  Google Scholar 

  24. Bazarnik P, Adamczyk-Cieślak B, Ałka AG, Płonka B (2016) Mechanical and microstructural characteristics of Ti6Al4V/AA2519 and Ti6Al4V/AA1050/AA2519 laminates manufactured by explosive welding. Mater Design 111:146–157. https://doi.org/10.1016/j.matdes.2016.08.088

    Article  CAS  Google Scholar 

  25. Wang ZJ, Wang Z, Li MX (2007) Failure analysis of Al1060 sheets under double-sided pressure deformation conditions. Kem Ind 603:353–358. https://doi.org/10.4028/www.scientific.net/kem

    Article  Google Scholar 

  26. Kimura M, Iijima T, Kusaka M, Kaizu K, Fuji A (2016) Joining phenomena and tensile strength of friction welded joint between Ti–6Al–4V titanium alloy and low carbon steel. J Manuf Process 24:203–211. https://doi.org/10.1016/j.jmapro.2016.09.004

    Article  Google Scholar 

  27. Saravanan S, Raghukandan K (2022) Microstructure, strength and welding window of aluminum alloy− stainless steel explosive cladding with different interlayers. T Nonferr Metal Soc 32:91–103. https://doi.org/10.1016/S1003-6326(21)65780-1

    Article  CAS  Google Scholar 

  28. Athar MH, Tolaminejad B (2015) Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding. Mater Design 86:516–525. https://doi.org/10.1016/j.matdes.2015.07.114

    Article  CAS  Google Scholar 

  29. Zeng XY, Li XJ, Chen X (2019) Numerical and experimental studies on the explosive welding of plates with different initial strength. Weld World 63:967–974. https://doi.org/10.1007/s40194-019-00733-0

    Article  Google Scholar 

  30. Chen X, Inao D, Tanaka S, Li XJ, Bataev IA, Hokamoto K (2021) Comparison of explosive welding of pure titanium/SUS 304 austenitic stainless steel and pure titanium/SUS 821L1 duplex stainless steel. T Nonferr Metal Soc 31:2687–2702. https://doi.org/10.1016/S1003-6326(21)65685-6

    Article  CAS  Google Scholar 

  31. Vecchio KS (2005) Synthetic multifunctional metallic-intermetallic laminate composites. Jom 57:25–31. https://doi.org/10.1007/s11837-005-0229-4

    Article  CAS  Google Scholar 

  32. Shiran MKG, Khalaj G, Pouraliakbar H, Jandaghi MR, Dehnavi AS, Bakhtiari H (2018) Multilayer Cu/Al/Cu explosive welded joints: characterizing heat treatment effect on the interface microstructure and mechanical properties. J Manuf Process 35:657–663. https://doi.org/10.1016/j.jmapro.2018.09.014

    Article  Google Scholar 

  33. Da SL, Sivaswamy G, Sun L (2021) Effect of texture and mechanical anisotropy on flow behaviour in Ti–6Al–4V alloy under superplastic forming conditions. Mat Sci Eng A-Struct 819:141367. https://doi.org/10.1016/j.msea.2021.141367

    Article  CAS  Google Scholar 

  34. Athar HMM, Tolaminejad B (2016) Interface morphology and mechanical properties of Al-Cu-Al laminated composites fabricated by explosive welding and subsequent rolling process. Met Mater Int 22:670–680. https://doi.org/10.1007/s12540-016-5687-4

    Article  CAS  Google Scholar 

  35. Zhang Y, Babu SS, Daehn GS (2010) Interfacial ultrafine-grained structures on aluminum alloy 6061 joint and copper alloy 110 joint fabricated by magnetic pulse welding. J Mater Sci 45:4645–4651. https://doi.org/10.1007/s10853-010-4676-0

    Article  CAS  Google Scholar 

  36. Tan JC, Tan MJ (2003) Dynamic continuous recrystallization characteristics in two stage deformation of Mg–3Al–1Zn alloy sheet. Mat Sci Eng A-Struct 339:124–132. https://doi.org/10.1016/S0921-5093(02)00096-5

    Article  Google Scholar 

  37. Huang JW, Liang GF, Luo N, Li XJ, Chen X, Hu JN (2023) Study on explosive welding A1060/3D-Printed-SUS316L. J Mater Res Technol 27:2508–2523. https://doi.org/10.1016/j.jmrt.2023.10.096

    Article  CAS  Google Scholar 

  38. Jiang L, Luo N, Liang H (2022) Microstructure and texture distribution in the bonding interface of Cu/Al composite tube fabricated by explosive welding. Int J Adv Manuf Tech 123:3021–3031. https://doi.org/10.1007/s00170-022-10371-4

    Article  Google Scholar 

  39. Guo X, Fan M, Wang L, Ma F (2016) Bonding interface and bend-ing deformation of Al/316LSS clad metal prepared by explosive welding. J Mater Eng Perform 25:2157–2163. https://doi.org/10.1007/s11665-016-2057-9

    Article  CAS  Google Scholar 

  40. Fronczek DM, Chulist R, Litynska-Dobrzynska L, Szulc Z, Zieba P, Wojewoda-Budka J (2016) Microstructure changes and phase growth occurring at the interface of the al/ti explosively welded and annealed joints. J Mater Eng Perform 25:3211–3217. https://doi.org/10.1007/s11665-016-1978-7

    Article  CAS  Google Scholar 

  41. Vaidya WV, Horstmann M, Ventzke V (2010) Improving interfacial properties of a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications. J Mater Sci 45:6242–6254. https://doi.org/10.1007/s10853-010-4719-6

    Article  CAS  Google Scholar 

  42. Xu L, Cui YY, Hao YL (2006) Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples. Mat Sci Eng A-Struct 435:638–647. https://doi.org/10.1016/j.msea.2006.07.077

    Article  CAS  Google Scholar 

  43. Liu JP, Su YY, Xu YJ, Luo LS, Guo JJ, Fu HZ (2011) First phase selection in solid Ti/Al diffusion couple. Rare Metal Mat Eng 40:753–756. https://doi.org/10.1016/S1875-5372(11)60031-3

    Article  CAS  Google Scholar 

  44. Emurlaeva YY, Ivanov IV, Lazurenko DV, Ogneva TS, Chen P, Zhou Q, Bataev AA, Ruktuev AA, Tanaka S, Bataev IA (2021) On the texture and superstructure formation in Ti–TiAl3–Al MIL composites. Intermetallics 135:107231. https://doi.org/10.1016/j.intermet.2021.107231

    Article  CAS  Google Scholar 

  45. Zhang JY, Wang YH, Zheng L, Chen QA, Chen YY, Li HZ (2022) Formation mechanism and growth kinetics of TiAl3 phase in cold-rolled Ti/Al laminated composites during annealing. T Nonferr Metal Soc 32:524–539. https://doi.org/10.1016/S1003-6326(22)65813-8

    Article  CAS  Google Scholar 

  46. Xu H, Liu C, Silberschmidt VV, Pramana SS, White TJ, Chen Z, Acoff VL (2011) Behavior of aluminum oxide, intermetallics and voids in Cu–Al wire bonds. Acta Mater 59:5661–5673. https://doi.org/10.1016/j.actamat.2011.05.041

    Article  CAS  Google Scholar 

  47. Tayyebi M, Rahmatabadi D, Karimi A, Adhami M, Hashemi R (2021) Investigation of annealing treatment on the interfacial and mechanical properties of Al5052/Cu multilayered composites subjected to ARB process. J Alloy Compd 871:159513. https://doi.org/10.1016/j.jallcom.2021.159513

    Article  CAS  Google Scholar 

  48. Ingole S, Rathod MJ (2023) Optimisation of diffusion welding parametersin Al-Cu bimetal for shaped charge application. https://doi.org/10.56042/ijems.v1i1.65437

  49. Chen F, Wang W, Wang K, Ho P, Li H, Huang X, Chen W (2018) Influence of post-weld heat treatment on microstructure and adhesion of Ti/Cu composite. Mater Sci Tech-Lond 34:1441–1446. https://doi.org/10.1080/02670836.2018.1459353

    Article  CAS  Google Scholar 

  50. Norouzi E, Shamanian M, Atapour M (2017) Diffusion brazing of Ti–6Al–4V and AISI 304: an EBSD study and mechanical properties. J Mater Sci 52:12467–12475. https://doi.org/10.1007/s10853-017-1376-z

    Article  CAS  Google Scholar 

  51. Eremenko VN, Buyanov YI, Prima SB (1966) Phase diagram of the system titanium–copper. Sov Powder Metall Met Ceram 5:494–502. https://doi.org/10.1007/BF00775543

    Article  Google Scholar 

  52. Wang J, Liu C, Leinenbach C (2011) Experimental investigation and thermodynamic assessment of the Cu–Sn–Ti ternary system. Calphad 35:82–94. https://doi.org/10.1016/j.calphad.2010.12.006

    Article  CAS  Google Scholar 

  53. Greenberg BA, Ivanov MA, Pushkin MS, Inozemtsev AV, Patselov AM, Tankeyev AP, Lysak VI (2016) Formation of intermetallic compounds during explosive welding. Metall Mater Trans A 47:5461–5473. https://doi.org/10.1007/s11661-016-3729-7

    Article  CAS  Google Scholar 

  54. Nemat-Nasser S, Guo WG, Nesterenko VF (2001) Dynamic response of conventional and hot isostatically pressed Ti–6Al–4V alloys: experiments and modeling. Mech Mater 33:425–439. https://doi.org/10.1016/S0167-6636(01)00063-1

    Article  Google Scholar 

  55. Peirs J, Tirry W, Amin-Ahmadi B (2013) Microstructure of adiabatic shear bands in Ti6Al4V. Mater Charact 75:79–92. https://doi.org/10.1016/j.matchar.2012.10.009

    Article  CAS  Google Scholar 

  56. Sheng LY, Yang F, Xi TF, Lai C, Ye HQ (2011) Influence of heat treatment on interface of Cu–Al bimetal composite fabricated by cold rolling. Compos Part B-Eng 42:1468–1473. https://doi.org/10.1016/j.compositesb.2011.04.045

    Article  CAS  Google Scholar 

  57. Mamalis AG, Vaxevanidis NM, Szalay A, Prohaszka J (1944) Fabrication of aluminium/copper bimetallics by explosive cladding and rolling. J Mater Process Tech 44:99–117. https://doi.org/10.1016/0924-0136(94)90042-6

    Article  Google Scholar 

  58. Paul H, Skuza W, Chulist R (2020) The effect of interface morphology on the electro-mechanical properties of Ti/Cu clad composites produced by explosive welding. Metall Mater Trans A 51:750–766. https://doi.org/10.1007/s11661-019-05537-x

    Article  CAS  Google Scholar 

  59. Paul H, Miszczyk MM, Chulist R (2018) Microstructure and phase constitution in the bonding zone of explosively welded tantalum and stainless steel sheets. Mater Design 153:177–189. https://doi.org/10.1016/j.matdes.2018.05.014

    Article  CAS  Google Scholar 

  60. Bayley SW (2015) A Study of the ExplosiveWeldabilty of 304 Stainless Steel Flat Plates Using Primasheet 1000, New Mexico Institute of Mining and Technology

  61. Miszczyk MM, Paul H, Driver JH, Drzymała P (2017) Recrystallization nucleation in stable aluminium-base single crystals: crystallography and mechanisms. Acta Mater 125:109–124. https://doi.org/10.1016/j.actamat.2016.11.054

    Article  CAS  Google Scholar 

  62. Wang M, Hu J, Li K (2024) Study on the relationship between interface morphology and mechanical properties of explosive welded titanium/duplex stainless steel. Int J Adv Manuf Tech. https://doi.org/10.1007/s00170-024-13619-3

    Article  Google Scholar 

  63. Gloc M, Wachowski M, Plocinski T, Kurzydlowski KJ (2016) Microstructural and microanalysis investigations of bond titanium grade1/low alloy steel st52-3N obtained by explosive welding. J Alloy Compd 671:446–451. https://doi.org/10.1016/j.jallcom.2016.02.120

    Article  CAS  Google Scholar 

  64. Apblett C, Muira D, Sullivan M, Ficalora PJ (1992) Reaction of Cu-Ti bilayer films in vacuum and hydrogen. J Appl Phys 71:4925–4932. https://doi.org/10.1063/1.350641

    Article  CAS  Google Scholar 

  65. Paul H, Chulist R, Miszczyk M, Lityńska-Dobrzyńska L, Cios G, Gałka A, Szlezynger M (2020) Towards a better understanding of the phase transformations in explosively welded copper to titanium sheets. Mat Sci Eng A-Struct 784:139285. https://doi.org/10.1016/j.msea.2020.139285

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (12302436), the projects of the Wuhan Science and Technology Bureau (2022010801020379), the projects of the Anhui Province Key Research and Development Plan (2022a05020021), the projects of the Research Fund of Jianghan University (2023JCYJ05), the project of Key Laboratory of Impact and Safety Engineering (Ningbo University, CJ202207), Ministry of Education, and the China Postdoctoral Science Foundation (2023M742722).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Chen.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, G., Huang, J., Zhou, D. et al. Study on explosive welding A7075 and Ti–6Al–4 V with aluminum or copper interlayer. J Mater Sci 59, 15883–15903 (2024). https://doi.org/10.1007/s10853-024-10122-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-10122-8

Navigation