Skip to main content

Advertisement

Log in

Process stability optimization of the twin-screw extrusion adapted for concentrated cellulose fibrillation

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The twin-screw extrusion (TSE) process has recently been investigated for the production of cellulose nanofibrils (CNF). The main advantage of this process is the production of CNF at high solid content (around 20 wt% suspensions) and lower energy consumption. Typically, studies focus on the quality of the extruded material (i.e., CNF) by comparing different pretreatments, biomass sources or combinations of processes. Limited information is available on the TSE process itself and its stability. This work proposes to analyze some key parameters such as torque, in situ temperature and flow of extruded material. All together they reflect a certain stability of the TSE process. The process is considered stable when the torque and temperatures plateau and when the mass flow is continuous and constant. These parameters vary depending on the different pretreatments and the solid content of the cellulose suspensions introduced in the TSE. Morphologies of extruded CNF are characterized at different scales with optical microscopy, SEM-FEG and TEM images. A simplified quality index was calculated to compare extruded CNF. A high and fluctuating torque, rising temperatures and discontinuous mass flow were recorded for the enzymatically pretreated pulp and refined pulp with a long dwell time of the fibers in the extruder. On the contrary, a low and very stable torque, stabilized temperatures and continuous mass flow were reported for the pulp obtained after a combination of enzymatic hydrolysis and refining.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Not applicable.

References

  1. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815

    CAS  Google Scholar 

  2. Rai R, Dhar P (2022) Biomedical engineering aspects of nanocellulose: a review. Nanotechnology 33(36):362001. https://doi.org/10.1088/1361-6528/ac6fef

    Article  CAS  Google Scholar 

  3. Dufresne A (2022) Preparation and applications of cellulose nanomaterials. Chem Afr. https://doi.org/10.1007/s42250-022-00542-x

    Article  Google Scholar 

  4. Chen Z et al (2023) Advanced flexible materials from nanocellulose. Adv Funct Mater 33:2214245. https://doi.org/10.1002/adfm.202214245

    Article  CAS  Google Scholar 

  5. Dias OAT, Konar S, Leão AL, Yang W, Tjong J, Sain M (2020) Current state of applications of nanocellulose in flexible energy and electronic devices. Front Chem. https://doi.org/10.3389/fchem.2020.00420

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90(2):735–764. https://doi.org/10.1016/j.carbpol.2012.05.026

    Article  CAS  Google Scholar 

  7. Hubbe MA et al (2017) Nanocellulose in thin films coatings and plies for packaging applications: a review. BioResources. https://doi.org/10.15376/biores.12.1.2143-2233

    Article  Google Scholar 

  8. Kontturi E et al (2018) Advanced materials through assembly of nanocelluloses. Adv Mater 30(24):1703779. https://doi.org/10.1002/adma.201703779

    Article  CAS  Google Scholar 

  9. Chen C, Xi Y, Weng Y (2022) Recent Advances in cellulose-based hydrogels for tissue engineering applications. Polymers. https://doi.org/10.3390/polym14163335

    Article  PubMed  PubMed Central  Google Scholar 

  10. Balea A, Fuente E, Blanco A, Negro C (2019) Nanocelluloses: natural-based materials for fiber-reinforced cement composites. A Crit Rev Polym 11(3):518. https://doi.org/10.3390/polym11030518

    Article  CAS  Google Scholar 

  11. Szafraniec M, Grabias-Blicharz E, Barnat-Hunek D, Landis EN (2022) A critical review on modification methods of cement composites with nanocellulose and reaction conditions during nanocellulose production. Materials 15(21):7706. https://doi.org/10.3390/ma15217706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Korhonen O, Budtova T (2020) All-cellulose composite aerogels and cryogels. Compos A Appl Sci Manuf 137:106027. https://doi.org/10.1016/j.compositesa.2020.106027

    Article  CAS  Google Scholar 

  13. Nargatti KI, Subhedar AR, Ahankari SS, Grace AN, Dufresne A (2022) Nanocellulose-based aerogel electrodes for supercapacitors: a review. Carbohydr Polym 297:120039

    Article  CAS  PubMed  Google Scholar 

  14. Håkansson KMO et al (2016) Solidification of 3D printed nanofibril hydrogels into functional 3D cellulose structures. Adv Mater Technologies 1(7):1600096. https://doi.org/10.1002/admt.201600096

    Article  CAS  Google Scholar 

  15. Koppolu R, Banvillet G, Ghimire H, Bras J, Toivakka M (2022) Enzymatically pretreated high-solid-content nanocellulose for a high-throughput coating process. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.2c02423

    Article  Google Scholar 

  16. Costa C et al (2019) Emulsion formation and stabilization by biomolecules: the leading role of cellulose. Polymers 11(10):1570. https://doi.org/10.3390/polym11101570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pääkkö M et al (2007) enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8(6):1934–1941. https://doi.org/10.1021/bm061215p

    Article  CAS  Google Scholar 

  18. Moreau C et al (2019) Lytic polysaccharide monooxygenases (LPMOs) facilitate cellulose nanofibrils production. Biotechnol Biofuels 12:156. https://doi.org/10.1186/s13068-019-1501-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85. https://doi.org/10.1039/c0nr00583e

    Article  CAS  PubMed  Google Scholar 

  20. Gandini A, Belgacem MN (2016) The Surface and in-depth modification of cellulose Fibers. In: Rojas OJ (ed) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer Verlag Berlin, Berlin

    Google Scholar 

  21. Rol F, Belgacem MN, Gandini A, Bras J (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264. https://doi.org/10.1016/j.progpolymsci.2018.09.002

    Article  CAS  Google Scholar 

  22. Hall TD, Inman ME, Snyder ST, Vijapur SH, Taylor EJ, Le TXH, Method and apparatus for electrochemical dewatering of suspensions of cellulosic nanomaterials’, US20200346953A1, Nov. 05, 2020 Accessed: Jul. 04, 2023. [Online]. Available: https://patents.google.com/patent/US20200346953A1/en

  23. Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1):91–102. https://doi.org/10.1007/s10570-011-9630-z

    Article  CAS  Google Scholar 

  24. Nordenström M, Kaldéus T, Erlandsson J, Pettersson T, Malmström E, Wågberg L (2021) Redispersion strategies for dried cellulose nanofibrils. ACS Sustain Chem Eng 9(33):11003–11010. https://doi.org/10.1021/acssuschemeng.1c02122

    Article  CAS  Google Scholar 

  25. Hiltunen J, Kemppainen K, Pere J Process for producing fibrillated cellulose material, WO2015092146A1, Jun. 25, 2015 Accessed: Jul. 04, 2023. [Online]. Available: https://patents.google.com/patent/WO2015092146A1/en

  26. Rol F et al (2017) Pilot-scale twin screw extrusion and chemical pretreatment as an energy-efficient method for the production of nanofibrillated cellulose at high solid content. ACS Sustain Chem Eng 5(8):6524–6531. https://doi.org/10.1021/acssuschemeng.7b00630

    Article  CAS  Google Scholar 

  27. Norizan MN et al (2022) Nanocellulose-based nanocomposites for sustainable applications: a review. Nanomaterials 12(19):3483. https://doi.org/10.3390/nano12193483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heiskanen I, Harlin A, Backfolk v, Laitinen R Process for production of microfibrillated cellulose in an extruder and microfibrillated cellulose produced according to the process, WO2011051882 (A1), May 05, 2011 Accessed: Sep. 06, 2022. [Online]. Available: https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20110505&DB=&locale=fr_EP&CC=WO&NR=2011051882A1&KC=A1&ND=4

  29. Gatt E, Rigal L, Vandenbossche V (2018) Biomass pretreatment with reactive extrusion using enzymes: a review. Ind Crops Prod 122:329–339. https://doi.org/10.1016/j.indcrop.2018.05.069

    Article  CAS  Google Scholar 

  30. Bouvier J, Campanella OH (2014) Extrusion Processing Technology: Food and Non‐Food Biomaterials, 1st ed. Wiley, p.544. https://doi.org/10.1002/9781118541685.

  31. Kargarzadeh H et al (2018) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog Polym Sci 87:197–227

    Article  CAS  Google Scholar 

  32. Ho TTT, Abe K, Zimmermann T, Yano H (2015) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 22(1):421–433. https://doi.org/10.1007/s10570-014-0518-6

    Article  CAS  Google Scholar 

  33. Rol F, Belgacem N, Meyer V, Petit-Conil M, Bras J (2019) Production of fire-retardant phosphorylated cellulose fibrils by twin-screw extrusion with low energy consumption. Cellulose 26(9):5635–5651. https://doi.org/10.1007/s10570-019-02447-4

    Article  CAS  Google Scholar 

  34. Rol F, Saini S, Meyer V, Petit-Conil M, Bras J (2019) Production of cationic nanofibrils of cellulose by twin-screw extrusion. Ind Crops Prod 137:81–88. https://doi.org/10.1016/j.indcrop.2019.04.031

    Article  CAS  Google Scholar 

  35. Rol F, Vergnes B, El Kissi N, Bras J (2020) Nanocellulose production by twin-screw extrusion: simulation of the screw profile to increase the productivity. ACS Sustain Chem Eng 8(1):50–59. https://doi.org/10.1021/acssuschemeng.9b01913

    Article  CAS  Google Scholar 

  36. Khadraoui M, Khiari R, Bergaoui L, Mauret E (2022) Production of lignin-containing cellulose nanofibrils by the combination of different mechanical processes. Ind Crops Prod 183:114991. https://doi.org/10.1016/j.indcrop.2022.114991

    Article  CAS  Google Scholar 

  37. Razzak A, Khiari R, Moussaoui Y, Belgacem MN (2022) Cellulose nanofibers from schinus molle: preparation and characterization. Molecules. https://doi.org/10.3390/molecules27196738

    Article  PubMed  PubMed Central  Google Scholar 

  38. Espinosa E, Rol F, Bras J, Rodríguez A (2019) Production of lignocellulose nanofibers from wheat straw by different fibrillation methods. COMPARISON of its viability in cardboard recycling process. J Clean Prod 239:118083. https://doi.org/10.1016/j.jclepro.2019.118083

    Article  CAS  Google Scholar 

  39. Espinosa Víctor E, Rol F, Bras J, Rodríguez A (2020) Use of multi-factorial analysis to determine the quality of cellulose nanofibers: effect of nanofibrillation treatment and residual lignin content. Cellulose 27(18):10689–10705. https://doi.org/10.1007/s10570-020-03136-3

    Article  CAS  Google Scholar 

  40. Banvillet G et al (2023) Cellulose nanofibril production by the combined use of four mechanical fibrillation processes with different destructuration effects. Cellulose. https://doi.org/10.1007/s10570-022-05016-4

    Article  Google Scholar 

  41. Rol F, Banvillet G, Meyer V, Petit-Conil M, Bras J (2018) Combination of twin-screw extruder and homogenizer to produce high-quality nanofibrillated cellulose with low energy consumption. J Mater Sci 53(17):12604–12615. https://doi.org/10.1007/s10853-018-2414-1

    Article  CAS  Google Scholar 

  42. Banvillet G, Gatt E, Belgacem N, Bras J (2021) Cellulose fibers deconstruction by twin-screw extrusion with in situ enzymatic hydrolysis via bioextrusion. Biores Technol 327:124819. https://doi.org/10.1016/j.biortech.2021.124819

    Article  CAS  Google Scholar 

  43. Rol F (2019) Cellulose pretreatments for a nanofibrillation by twin-screw extrusion, UGA, Grenoble

  44. Bras J, Rol F, Petit-Conil M, Meyer V Procédé De Fabrication D’une Suspension De Nanofibrilles De Cellulose, WO2020221934A1, Nov. 05, 2020

  45. Desmaisons J, Boutonnet E, Rueff M, Dufresne A, Bras J (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohyd Polym 174:318–329. https://doi.org/10.1016/j.carbpol.2017.06.032

    Article  CAS  Google Scholar 

  46. Zhang H et al (2023) Size-controlled synthesis of xylan micro / nanoparticles by self-assembly of alkali-extracted xylan. Carbohyd Polym 315:120944. https://doi.org/10.1016/j.carbpol.2023.120944

    Article  CAS  Google Scholar 

  47. Wang H et al (2023) Repurposing Xylan biowastes for sustainable household detergents. ACS Sustain Chem Eng 11(7):2949–2958. https://doi.org/10.1021/acssuschemeng.2c06439

    Article  CAS  Google Scholar 

  48. Meng Z et al (2021) Bottom-up construction of xylan nanocrystals in dimethyl sulfoxide. Biomacromol. https://doi.org/10.1021/acs.biomac.0c01600

    Article  Google Scholar 

  49. Falcoz-Vigne L et al (2017) Quantification of a tightly adsorbed monolayer of xylan on cellulose surface. Cellulose 24(9):3725–3739. https://doi.org/10.1007/s10570-017-1401-z

    Article  CAS  Google Scholar 

  50. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10. https://doi.org/10.1186/1754-6834-3-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  52. Wang L, Zhang Y, Gao P, Shi D, Liu H, Gao H (2006) Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol Bioeng 93(3):443–456. https://doi.org/10.1002/bit.20730

    Article  CAS  PubMed  Google Scholar 

  53. Gharehkhani S et al (2015) Basic effects of pulp refining on fiber properties—A review. Carbohyd Polym 115:785–803. https://doi.org/10.1016/j.carbpol.2014.08.047

    Article  CAS  Google Scholar 

  54. Wang Q et al (2020) Understanding the effect of depth refining on upgrading of dissolving pulp during cellulase treatment. Ind Crops Prod 144:112032. https://doi.org/10.1016/j.indcrop.2019.112032

    Article  CAS  Google Scholar 

  55. Hermans PH, Weidinger A (1946) On the recrystallization of amorphous cellulose. J Am Chem Soc 68(12):2547–2552. https://doi.org/10.1021/ja01216a037

    Article  CAS  Google Scholar 

  56. Zeng J et al (2021) Cellulose nanofibrils manufactured by various methods with application as paper strength additives. Sci Rep. https://doi.org/10.1038/s41598-021-91420-y

    Article  PubMed  PubMed Central  Google Scholar 

  57. Banvillet G, Industrial application of pretreatments for obtaining high quality cellulose nanofibrils, These de doctorat, Université Grenoble Alpes, 2021. Accessed: Mar. 27, 2024. [Online]. Available: https://theses.fr/2021GRALI032

  58. Kępa K, Chaléat CM, Amiralian N, Batchelor W, Grøndahl L, Martin DJ (2019) Evaluation of properties and specific energy consumption of spinifex-derived lignocellulose fibers produced using different mechanical processes. Cellulose 26(11):6555–6569. https://doi.org/10.1007/s10570-019-02567-x

    Article  CAS  Google Scholar 

  59. Rissanen V. Process optimization of cellulose fibril production - the effect of process medium composition on energy efficiency and product quality

  60. Missoum K, Belgacem N, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766. https://doi.org/10.3390/ma6051745

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is funded by Grenoble INP and Centre technique, du Papier (Grenoble, France). The LGP2 is part of the LabEx Tec 21 (Grant Agreement No. ANR-11-LABX-0030), the Institut Carnot Polynat (Grant Agreement No. ANR-16-CARN-002501) and the Cross disciplinary program Glyco@Alps (Investissements d’avenir – Grant agreement ANR-15-IDEX-02). Authors would like to thank Jean-Luc Puteaux and the NanoBio-ICMG platform (UAR 2607) for granting access to the TEM in CERMAV (Grenoble, France), Thierry Encinas in CMTC for XRD analysis (Grenoble, France) and Novozymes for the enzymes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Bras.

Ethics declarations

Conflict of interest

The authors declare that there was no competing financial and conflict of interest which could affect the results of this work.

Ethical approval

Not applicable.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 622 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freville, E., Zeno, E., Meyer, V. et al. Process stability optimization of the twin-screw extrusion adapted for concentrated cellulose fibrillation. J Mater Sci 59, 15904–15919 (2024). https://doi.org/10.1007/s10853-024-10115-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-10115-7

Navigation