Skip to main content
Log in

Characterization of sputter-deposited hydrophobic chromium doped nickel alumnide coatings for mechanical and high-temperature oxidation-resistant applications

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ni3Al and Cr-Ni3Al films were deposited on Inconel-718 using the DC magnetron sputtering at a substrate temperature of 400 °C. The evolution of phase, microstructure, surface topography, and mechanical properties of the deposited films have been characterized using XRD, FESEM, AFM, and nanoindentation, respectively. The results of nanoindentation showed that the hardness, modulus, and adhesive strength of the coatings increased with increase in Cr concentration in the host Ni3Al matrix. The maximum hardness and modulus of 10.62 and 150.42 GPa respectively are shown by 5.7 at% of Cr-Ni3Al films. The cyclic oxidation tests were performed at elevated temperatures of 900 °C, 1000 °C, and 1100 °C in the open-air environment to study the actual oxidation attack. The results of the test showed that the rate of oxidation in Ni3Al and Cr-Ni3Al films was low as compared to the uncoated substrate. Ni3Al film doped with 5.7 at% of Cr-Ni3Al has resulted in providing better protection to the substrate against oxidation attacks. The surface morphology and elemental composition of the oxidized samples were investigated using FESEM and EDS to elucidate the surface scale analysis and mechanism of oxidation due to the formation of different oxide layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data will be made available upon request to the corresponding author.

References

  1. William Grips VK, Barshilia HC, Selvi VE, Rajam KS (2006) Electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering. Thin Solid Films 514(1–2):204–211. https://doi.org/10.1016/j.tsf.2006.03.008

    Article  CAS  Google Scholar 

  2. Bobzin K, Brögelmann T, Kalscheuer C, Stahl K, Lohner T, Yilmaz M (2019) (Cr, Al)N and (Cr, Al, Mo)N hard coatings for tribological applications under minimum quantity lubrication. Tribol Int 140:105817. https://doi.org/10.1016/j.triboint.2019.06.010

    Article  CAS  Google Scholar 

  3. Rao AU, Tiwari SK, Kharb AS, Sardana N, Chawla V, Kumar S, Saxena V, Chawla AK (2024) Synthesis and characterization of low-friction W-V-N alloy coatings using reactive magnetron sputtering technique for tribological applications. J Vac Sci Technol A 42:023408. https://doi.org/10.1116/6.0003192

    Article  CAS  Google Scholar 

  4. Tiwari SK, Verma PC, Kharb AS, Chawla AK, Avasthi DK (2024) The effect of sputtering parameters and doping on the properties of CrN-based coatings—A critical review. Surf Interface Anal 56(7):479-497. https://doi.org/10.1002/sia.7306

    Article  CAS  Google Scholar 

  5. Zheng J, Hao J, Liu X, Gong Q, Liu W (2012) Surface & coatings technology a thick TiN / TiCN multilayer fi lm by DC magnetron sputtering. Surf Coat Technol 209:110–116. https://doi.org/10.1016/j.surfcoat.2012.08.045

    Article  CAS  Google Scholar 

  6. Tiwari SK, Rao AU, Kharb AS, Chawla AK, Avasthi DK (2023) A review of mechanical and tribological properties of Ni 3 Al-based coatings-synthesis and high-temperature behavior. Phys Scr 98:72001. https://doi.org/10.1088/1402-4896/acd81c

    Article  Google Scholar 

  7. PalDey S, Deevi SC, Alford TL (2004) Cathodic arc deposited thin film coatings based on TiAl intermetallics. Intermetallics 12:985–991. https://doi.org/10.1016/j.intermet.2004.02.021

    Article  CAS  Google Scholar 

  8. Suriñach S, Malagelada J, Baró MD (1993) Thermodynamic properties of nanocrystalline Ni3Al-based alloys prepared by mechanical attrition. Mater Sci Eng A 168:161–164. https://doi.org/10.1016/0921-5093(93)90721-P

    Article  Google Scholar 

  9. Tishkevich DI, Vorobjova AI, Shimanovich DL, Vinnik DA, Zubar TI, Kozlovskiy AL, Zdorovets MV, Yakimchuk DV, Trukhanov SV, Trukhanov AV (2019) Formation and corrosion properties of Ni-based composite material in the anodic alumina porous matrix. J Alloys Compd 804:139–146. https://doi.org/10.1016/j.jallcom.2019.07.001

    Article  CAS  Google Scholar 

  10. Vorobjova A, Tishkevich D, Shimanovich D, Zdorovets M, Kozlovskiy A, Zubar T, Vinnik D, Dong M, Trukhanov S, Trukhanov A, Fedosyuk V (2020) Electrochemical behaviour of Ti/Al2O3/Ni nanocomposite material in artificial physiological solution: Prospects for biomedical application. Nanomater 10:173. https://doi.org/10.3390/nano10010173.

    Article  CAS  Google Scholar 

  11. Pan YC, Chuang TH, Yao YD (1991) Long-term oxidation behaviour of Ni3Al alloys with and without chromium additions. J Mater Sci 26:6097–6103. https://doi.org/10.1007/BF01113890

    Article  CAS  Google Scholar 

  12. Trukhanov AV, Darwish KA, Salem MM, Hemeda OM, Abdel Ati MI, Darwish MA, Kaniukov EY, Podgornaya SV, Turchenko VA, Tishkevich DI, Zubar TI, Astapovich KA, Kostishyn VG, Trukhanov SV (2021) Impact of the heat treatment conditions on crystal structure, morphology and magnetic properties evolution in BaM nanohexaferrites. J Alloys Compd 866:158961. https://doi.org/10.1016/j.jallcom.2021.158961

    Article  CAS  Google Scholar 

  13. El-Shater RE, El Shimy H, Saafan SA, Darwish MA, Zhou D, Trukhanov AV, Trukhanov SV, Fakhry F (2022) Synthesis, characterization, and magnetic properties of Mn nanoferrites. J Alloys Compd 928:166954. https://doi.org/10.1016/j.jallcom.2022.166954

    Article  CAS  Google Scholar 

  14. Trukhanov SV, Trukhanov AV, Turchenko VA, Kostishin VG, Panina LV, Kazakevich IS, Balagurov AM (2016) Crystal structure and magnetic properties of the BaFe12-xInxO19 (x=0.1–1.2) solid solutions. J Magn Magn Mater 417:130–136. https://doi.org/10.1016/j.jmmm.2016.05.052

    Article  CAS  Google Scholar 

  15. Rahman A, Jayaganthan R, Prakash S, Chawla V, Chandra R (2009) High temperature oxidation behavior of nanostructured Ni-Al coatings on superalloy. J Alloys Compd 472:478–483. https://doi.org/10.1016/j.jallcom.2008.04.091

    Article  CAS  Google Scholar 

  16. Tiwari SK, Rao AU, Kharb AS, Chawla V, Sardana N, Avasthi DK, Chawla AK (2023) Investigation of mechanical and microstructural properties of sputter-deposited Zr-Ni3Al coatings J Vac Sci Technol A 41:063407. https://doi.org/10.1116/6.0003022

    Article  CAS  Google Scholar 

  17. Peréz P, Eddahbi M, González-Carrasco JL, Adeva P (1999) Effect of the processing route on the oxidation behaviour of a Ni3Al powder metallurgy alloy. Intermetallics 7:679–687. https://doi.org/10.1016/S0966-9795(98)00083-1

    Article  Google Scholar 

  18. Cao G, Geng L, Zheng Z, Naka M (2007) The oxidation of nanocrystalline Ni3Al fabricated by mechanical alloying and spark plasma sintering. Intermetallics 15:1672–1677. https://doi.org/10.1016/j.intermet.2007.07.003

    Article  CAS  Google Scholar 

  19. Zhang C, Feng K, Li Z, Lu F, Huang J, Wu Y, Chu PK (2016) Enhancement of hardness and thermal stability of W-doped Ni3Al thin films at elevated temperature. Mater Des 111:575–583. https://doi.org/10.1016/j.matdes.2016.09.039

    Article  CAS  Google Scholar 

  20. Yakovenko OS, Matzui LY, Vovchenko LL, Oliynyk VV, Zagorodnii VV, Trukhanov SV, Trukhanov AV (2021) Electromagnetic properties of carbon nanotube/bafe12−xgaxo19/epoxy composites with random and oriented filler distributions. Nanomaterials 11:2873. https://doi.org/10.3390/nano11112873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trukhanov AV, Almessiere MA, Baykal A, Slimani Y, Trukhanova EL, Timofeev AV, Kostishin VG, Trukhanov SV, Sertkol M, Ul-Hamid A (2023) Correlation between the composition, structural parameters and magnetic properties of spinel-based functional nanocomposites. Nano-Struct Nano-Objects 33:100941. https://doi.org/10.1016/j.nanoso.2023.100941

    Article  CAS  Google Scholar 

  22. Mirzaaghaei M, Enayati M, Ahmadi M (2021) Fabricating the tribological Properties and investigating of Ni 3 Al-MoS 2 composite coating. J Adv Mater Process 9:21–30

    Google Scholar 

  23. Rahman MS, Ding J, Beheshti A, Zhang X, Polycarpou AA (2018) Elevated temperature tribology of Ni alloys under helium environment for nuclear reactor applications. Tribol Int 123:372–384. https://doi.org/10.1016/j.triboint.2018.03.021

    Article  CAS  Google Scholar 

  24. Singh AK, Kumar B, Jha K (2020) Friction stir welding of additively manufactured Ti-6Al-4V: Microstructure and mechanical properties. J Mater Process Tech 277:116433. https://doi.org/10.1016/j.jmatprotec.2019.116433

    Article  CAS  Google Scholar 

  25. Tiwari SK, Rao AU, Kharb AS, Chawla V, Pandey JK, Saxena V, Sardana N, Avasthi DK, Chawla AK (2023) Microstructural and Mechanical Properties of Cr-Ni3Al alloy films synthesized by magnetron sputtering. J Mater Eng Perform. https://doi.org/10.1007/s11665-023-08894-2

    Article  Google Scholar 

  26. Zubar TI, Fedosyuk VM, Trukhanov SV, Tishkevich DI, Michels D, Lyakhov D, Trukhanov AV (2020) Method of surface energy investigation by lateral AFM: application to control growth mechanism of nanostructured NiFe films. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-71416-w

    Article  CAS  Google Scholar 

  27. Xing YY, Dai B, Wei XH, Ma YJ, Wang M (2014) Enhancement of high-temperature oxidation resistance and mechanical properties of Ni3Al thin films by inserting ultrathin Cr layers. Vacuum 101:107–112. https://doi.org/10.1016/j.vacuum.2013.07.040

    Article  CAS  Google Scholar 

  28. Tiwari SK, Rao AU, Chawla V, Dubey P, Saxena V, Chawla AK, Avasthi DK (2022) Synthesis and characterization of sputter-deposited Ni-rich Ni3Al hard coatings. J Alloys Compd 926:166802. https://doi.org/10.1016/j.jallcom.2022.166802

    Article  CAS  Google Scholar 

  29. Liu Z, Gao W (2001) The oxidation of nanocrystalline Ni3Al fabricated by mechanical alloying and spark plasma sintering. Oxid Met 55:481–504. https://doi.org/10.1023/A:1010307831480

    Article  CAS  Google Scholar 

  30. Khakpour I, Soltani R, Sohi MH (2015) Microstructure and high temperature oxidation behaviour of Zr-Doped aluminide coatings fabricated on nickel-based super alloy, procedia. Mater Sci 11:515–521. https://doi.org/10.1016/j.mspro.2015.11.011

    Article  CAS  Google Scholar 

  31. Wei X-P, Zheng W-J, Song Z-G, Lei T, Yong Q-L, Xie Q-C (2013) Elemental partitioning characteristics of equilibrium phases in inconel 718 Alloy at 600–1100 °C. J Iron Steel Res Int 20:88–94. https://doi.org/10.1016/S1006-706X(13)60117-X

    Article  CAS  Google Scholar 

  32. Turchenko VA, Trukhanov SV, Kostishin VG, Damay F, Porcher F, Klygach DS, Vakhitov MG, Lyakhov D, Michels D, Bozzo B, Fina I, Almessiere MA, Slimani Y, Baykal A, Zhou D, Trukhanov AV (2021) Features of structure, magnetic state and electrodynamic performance of SrFe12−xInxO19. Sci Rep 11:1–14. https://doi.org/10.1038/s41598-021-97684-8

    Article  CAS  Google Scholar 

  33. Chawla V, Jayaganthan R, Chawla AK, Chandra R (2009) Microstructural characterizations of magnetron sputtered Ti films on glass substrate. J Mater Process Technol 209:3444–3451. https://doi.org/10.1016/j.jmatprotec.2008.08.004

    Article  CAS  Google Scholar 

  34. Tillmann W, Momeni S (2015) Comparison of NiTi thin films sputtered from separate elemental targets and Ti-rich alloy targets. J Mater Process Technol 220:184–190. https://doi.org/10.1016/j.jmatprotec.2015.01.014

    Article  CAS  Google Scholar 

  35. Liu H, Chen W (2008) Porosity-dependent cyclic-oxidation resistance at 850 °C of annealed Ni-Al-based coatings via electroplating. Surf Coatings Technol 202:4019–4027. https://doi.org/10.1016/j.surfcoat.2008.02.015

    Article  CAS  Google Scholar 

  36. Trukhanov SV, Troyanchuk IO, Pushkarev NV, Szymczak H (2003) Magnetic Properties of anion-deficient La 1–x Ba x MnO 3–x/2 (0≤ x≤ 030) manganites. J Exp Theor Phys 96:110–117. https://doi.org/10.1134/1.1545390

    Article  CAS  Google Scholar 

  37. Trukhanov SV, Trukhanov AV, Szymczak H, Botez CE, Adair A (2007) Magnetotransport properties and mechanism of the A-site ordering in the Nd-Ba optimal-doped manganites. J Low Temp Phys 149:185–199. https://doi.org/10.1007/s10909-007-9507-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors of the work wish to acknowledge the Central Instrumentation Center (CIC), UPES, Dehradun, India for the lab support during the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Chawla.

Ethics declarations

Conflict of interest

There is no conflict of interest to be declared by the authors.

Additional information

Handling Editor: Zhao Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, S.K., Rao, A.U., Kharb, A.S. et al. Characterization of sputter-deposited hydrophobic chromium doped nickel alumnide coatings for mechanical and high-temperature oxidation-resistant applications. J Mater Sci 59, 13632–13651 (2024). https://doi.org/10.1007/s10853-024-10002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-10002-1

Navigation