Skip to main content
Log in

Construction of one-dimensional pn heterojunction TiO2/CuO composite with hierarchical structure and its dual efficient inactivation of Escherichia coli

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Photocatalytic antimicrobial is a promising advanced oxidation antibacterial technology that can utilize solar energy to achieve antibacterial function. However, due to the influence of diurnal variation, photocatalytic antimicrobials cannot maintain a continuous antibacterial effect in practical applications. Herein, a TiO2 fiber with CuO particle (TiO2/CuO) pn-type heterojunction with dual inactivation of Escherichia coli has been designed and prepared for water treatment. The formation of pn heterojunction and its high efficiency of charge separation and transfer were confirmed through HRTEM, FESEM, UV–Vis and photoelectrochemical tests, while the charge separation process of the heterojunction under visible-light irradiation was systematically investigated. The results showed that the antimicrobial rate of TiO2/CuO composites was 64.7% at 10 min under dark conditions. In contrast, under light exposure, the antibacterial rate could reach 96.2% for 10 min and 100% for 20 min. This research holds promise for advancing the construction of pn heterojunctions and provides a novel insight into reducing the dependence of photocatalytic antimicrobials on light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No data were used for the research described in the article.

References

  1. Liu Y, Liu ZN, Liu D, Wang WJ (2022) Photocatalytic inactivation of bacillus subtilis spores by natural sphalerite with persulfate under visible light irradiation. Coatings 12(4):528

    CAS  Google Scholar 

  2. Vorosmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561

    CAS  PubMed  Google Scholar 

  3. Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial-cells by semiconductor powders. FEMS Microbiol Lett 29:211–214

    CAS  Google Scholar 

  4. Bai HW, Liu ZY, Sun DD (2012) Solar-light-driven photodegradation and antibacterial activity of hierarchical TiO2/ZnO/CuO material. ChemPlusChem 77:941–948

    CAS  Google Scholar 

  5. Wang Q, Domen K (2020) Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem Rev 120:919–985

    CAS  PubMed  Google Scholar 

  6. Wang YZ, Wang XX, Li LS, Wu YS, Yu Q (2022) An experimental and theoretical study on the photocatalytic antibacterial activity of boron-doped TiO2 nanoparticles. Ceram Int 48:604–614

    CAS  Google Scholar 

  7. Yin JK, Lv LL, Chu YQ, Tan LJ (2023) Highly antibacterial Cu/Fe/N co-doped TiO2 nanopowder under visible light. Inorg Chem Commun 151:110587

    CAS  Google Scholar 

  8. Djearamane S, Sundaraji A, Eng PT, Liang SXT, Wong LS, Senthilkumar B (2023) Susceptibility of bacillus subtilis to zinc oxide nanoparticles treatment. Clin Ter 174:61–66

    CAS  PubMed  Google Scholar 

  9. Ontiveros-Robles JA, Villanueva-Flores F, Juarez-Moreno K, Simakov A, Vazquez-Duhalt R (2023) Antibody-functionalized copper oxide nanoparticles with targeted antibacterial activity. ChemistryOpen 12:e202200241

    Google Scholar 

  10. Adnan RM, Mezher M, Abdallah AM, Awad R, Khalil MI (2023) Synthesis, characterization, and antibacterial activity of Mg-doped CuO nanoparticles. Molecules 28:103

    CAS  Google Scholar 

  11. Bian CH, Wang YY, Yi YY et al (2023) Enhanced photocatalytic activity of S-doped graphitic carbon nitride hollow microspheres: synergistic effect, high-concentration antibiotic elimination and antibacterial behavior. J Colloid Interface Sci 643:256–266

    CAS  PubMed  Google Scholar 

  12. Zeng YX, Zhan XY, Hong B et al (2023) Surface atom rearrangement on carbon nitride for enhanced photocatalysis degradation of antibiotics under visible light. Chem Eng J 452:139434

    CAS  Google Scholar 

  13. Zhang J, Shao CL, Li XH, Xin JY, Tao R, Liu YC (2018) Assembling n-Bi2MoO6 nanosheets on electrospun p-CuAl2O4 hollow nanofibers: enhanced photocatalytic activity based on highly efficient charge separation and transfer. ACS Sustain Chem Eng 6:10714

    CAS  Google Scholar 

  14. Xu Q, Zhang L, Cheng B, Fan J, Yu J (2020) S-Scheme Heterojunction Photocatalyst. Chem 6(7):1543–1559

    Google Scholar 

  15. Chen XB, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    CAS  PubMed  Google Scholar 

  16. Zhang DM, Cong TZ, Xia LC, Pan LJ (2019) Growth of black TiO2 nanowire/carbon fiber composites with dendritic structure for efficient visible-light-driven photocatalytic degradation of methylene blue. J Mater Sci 54:7576–7588. https://doi.org/10.1007/s10853-019-03424-9

    Article  CAS  Google Scholar 

  17. Wang YZ, Wu YS, Xue XX, Yang H, Liu ZH (2017) Microstructure and antibacterial activity of ions (Ce, Y, or B)-doped Zn-TiO2: a comparative study. Mater Technol 32:310–320

    Google Scholar 

  18. Sopchenski L, Cogo S, Dias-Ntipanyj MF, Elifio-Esposito S, Popat KC, Soares P (2018) Bioactive and antibacterial boron doped TiO2 coating obtained by PEO. Appl Surf Sci 458:49–58

    CAS  Google Scholar 

  19. Zheng LX, Teng F, Ye XY, Zheng HJ, Fang XS (2020) Photo/electrochemical applications of metal sulfide/TiO2 heterostructures. Adv Energy Mater 10:1902355

    CAS  Google Scholar 

  20. Chen L, Ren JT, Yuan ZY (2023) Enabling internal electric fields to enhance energy and environmental catalysis. Adv Energy Mater 13:2203720

    CAS  Google Scholar 

  21. Dong XF, Lv XA, Huang JW, Chang Y, Ren XA, Ge CC (2023) Preparation of one-dimensional hierarchical sodium titanate under mild conditions and its potential application in recyclable Ag+-loaded antimicrobials. Colloids Surf Physicochem Eng Asp 676:132170

    CAS  Google Scholar 

  22. Yang Y, Cheng B, Yu JG, Wang LX, Ho WK (2023) TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity. Nano Res 16:4506–4514

    CAS  Google Scholar 

  23. Yang HG, Zeng HC (2005) Synthetic architectures of TiO2/H2Ti5O11·H2O, ZnO/H2Ti5O11·H2O, ZnO/TiO2/H2Ti5O11·H2O, and ZnO/TiO2 nanocomposites. J Am Chem Soc 127:270–278

    CAS  PubMed  Google Scholar 

  24. Xu FY, Zhu BC, Cheng B, Yu JG, Xu JS (2018) 1D/2D TiO2/MoS2 hybrid nanostructures for enhanced photocatalytic CO2 reduction. Adv Opt Mater 6:1800911

    Google Scholar 

  25. Rajender G, Kumar J, Giri PK (2018) Interfacial charge transfer in oxygen deficient TiO2-graphene quantum dot hybrid and its influence on the enhanced visible light photocatalysis. Appl Catal B-Environ 224:960–972

    CAS  Google Scholar 

  26. Pan CQ, Shen H, Liu GL et al (2022) CuO/TiO2 nanobelt with oxygen vacancies for visible-light-driven photocatalytic bacterial inactivation. ACS Appl Nano Mater 5:10980–10990

    CAS  Google Scholar 

  27. Li GH, Dimitrijevic NM, Chen L, Rajh T, Gray KA (2008) Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites. J Phys Chem C 112:19040–19044

    CAS  Google Scholar 

  28. Ma XH, Li DY, Jiang YH et al (2022) Fiber-like ZnO with highly dispersed Pt nanoparticles for enhanced photocatalytic CO2 reduction. J Colloid Interface Sci 628:768–776

    CAS  PubMed  Google Scholar 

  29. Li NY, Chen XJ, Wang J et al (2022) ZnSe nanorods-CsSnCl3 perovskite heterojunction composite for photocatalytic CO2 reduction. ACS Nano 16:3332–3340

    CAS  PubMed  Google Scholar 

  30. Wen HB, Huang S, Meng XG, Xian XL, Zhao JJ, Roy VAL (2022) Recent progress in the design of photocatalytic H2O2 synthesis system. Front Chem 10:1098209

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hajipour P, Eslami A, Bahrami A et al (2021) Surface modification of TiO2 nanoparticles with CuO for visible-light antibacterial applications and photocatalytic degradation of antibiotics. Ceram Int 47:33875–33885

    CAS  Google Scholar 

  32. Jiang J, Ding YQ (2023) Hydrogenation of C=N bonds on TiO2 surface: the effect of the Cu2O/TiO2 p-n heterojunction photocatalyst. Surf Interfaces 37:102625

    CAS  Google Scholar 

  33. Feizpoor S, Habibi-Yangjeh A, Luque R (2023) Preparation of TiO2/Fe-MOF n-n heterojunction photocatalysts for visible-light degradation of tetracycline hydrochloride. Chemosphere 336:139101

    CAS  PubMed  Google Scholar 

  34. Wang TT, Li LH, Yin ZL, Chen SY, Wang JL (2023) Selenium-sensitized TiO2 p-n heterojunction thin films with high resistance to oxidation and moisture for self-driven visible-light photodetection. Thin Solid Films 774:139853

    CAS  Google Scholar 

  35. Zheng JH, Zhang L (2018) Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability. Appl Catal B-Environ 237:1–8

    CAS  Google Scholar 

  36. Kimura Y, Tohmyoh H (2023) Fabrication of Cu oxide/TiO2 p-n nanojunctions by stress-induced migration. J Appl Phys 133:114302

    CAS  Google Scholar 

  37. Velmurugan S, Yang TCK, Chen JN, Liu ZX (2021) In-situ preparation of CuO nanoparticles decorated In2O3 pn heterojunction composite for the photoelectrochemical detection of ornidazole. Microchim Acta 188:372

    CAS  Google Scholar 

  38. Zhang N, Li HL, Yao B et al (2023) Construction of WO3 quantum dots/TiO2 nanowire arrays type II heterojunction via electrostatic self-assembly for efficient solar-driven photoelectrochemical water splitting. Dalton Trans 52:6284–6289

    CAS  PubMed  Google Scholar 

  39. Yus J, Ferrari B, Sanchez-Herencia AJ, Gonzalez Z (2020) Understanding the effects of different microstructural contributions in the electrochemical response of Nickel-based semiconductor electrodes with 3D hierarchical networks shapes. Electrochim Acta 335:135629

    CAS  Google Scholar 

  40. Zhao K, Zhao SL, Gao C et al (2018) Metallic cobalt-carbon composite as recyclable and robust magnetic photocatalyst for efficient CO2 reduction. Small 14:1800762

    Google Scholar 

  41. Bai HW, Liu ZY, Sun DD (2011) Hierarchical ZnO/Cu “corn-like” materials with high photodegradation and antibacterial capability under visible light. Phys Chem Chem Phys 13:6205–6210

    CAS  PubMed  Google Scholar 

  42. Alexander GB, Heston WM, Iler RK (1954) The solubility of amorphous silica in water. J Phys Chem 58:453–455

    CAS  Google Scholar 

  43. Cun JE, Fan X, Pan QQ et al (2022) Copper-based metal-organic frameworks for biomedical applications. Adv Colloid Interface Sci 305:102686

    CAS  PubMed  Google Scholar 

  44. Wu JM, Kao WT (2015) Heterojunction nanowires of AgxZn1xO−ZnO photocatalytic and antibacterial activities under visible-light and dark conditions. J Phys Chem C 119:1433–1441

    CAS  Google Scholar 

  45. Chen Z, Yao DC, Chu CC, Mao S (2023) Photocatalytic H2O2 production Systems: design strategies and environmental applications. Chem Eng J 451:138489

    CAS  Google Scholar 

  46. Zhang LY, Zhang JJ, Yu HG, Yu JG (2022) Emerging S-Scheme Photocatalyst. Adv Mater 34:2107668

    CAS  Google Scholar 

Download references

Acknowledgements

We appreciate eceshi (www.eceshi.com) for the EPR, XRD and TEM analyses.

Author information

Authors and Affiliations

Authors

Contributions

Xiaofeng Dong (first author) was involved in the conceptualization, methodology, software, experiment, formal analysis and writing—original draft; Junwei Huang (author 2) assisted in the data curation and writing—original draft; Haiqing Li (author 3) contributed to the visualization and experiment; Changchun Ge (corresponding author 1) contributed to the resources and supervision; Xiaona Ren (corresponding author 2) was involved in the conceptualization, resources, supervision and writing—review and editing.

Corresponding authors

Correspondence to Changchun Ge or Xiaona Ren.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 617 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Huang, J., Li, H. et al. Construction of one-dimensional pn heterojunction TiO2/CuO composite with hierarchical structure and its dual efficient inactivation of Escherichia coli. J Mater Sci 59, 11480–11496 (2024). https://doi.org/10.1007/s10853-024-09842-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09842-8

Navigation